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1 Day 1: June 10

Syllabus stuff!

1.1 What is Linear Algebra?

There’s two words here, linear and algebra. So, what is an algebra? We've
learned this pretty well:

e “Numbers”
e Real numbers
e Algorithms (4, —, x, /)

We will learn these algorithms again, but no longer with simply numbers. Here,
we will learn these under the context of vectors and matrices. This will be the
“linear” part. In linear algebra, we will learn both scalar and vector multiplication.

Another important term is a set, such as R and C. In linear algebra, we will
learn sets. We will learn what the set M (m,n) is; these are for matrices. R™ is
for vectors.

We will also learn what a space is. Here, we will hand-wave and define it as
a space with some additional structure.

As an example, we can think of our backpack as a set:

Backpack = {computer, binder, pencil, ...}

or a folder as one too, but this folder being specifically for MA351:

FolderMA351 = { . }

where all elements in this set has the additional property of being related to
MA351.

1.1.1 What is linear?

These are things that are “straight” such as lines and planes. We know the
standard equations of these as y = ax + b and az + by + cz = d. Both are linear
functions, the first in « and y, the latter in z, y and z. In this course, we will
learn about the algebraic definition of what linear really means. What is a linear
function? What is a linear transformation? Etc.

1.2 The vector space of m x n matrices

Our elements are matrices.
We begin with the classic introduction of a table. Here, let this be a grading
report of some kind:
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Homework Exam 1 Exam 2 Final
Student A 95 85 78 92
Student B 87 88 89 90

If we look solely at the numbers, we can consider this a matrix. An important
notion is the size of a matrix. Here, we represent the size by writing as the
number of rows by the number of columns. If there were thirty eight students,
then this matrix is size 38 x 4. Importantly when converting from a table to a
matrix, we leave out the labels as rows or columns. We are solely counting the

entries.
1 2
3 2

L

This is not, as there are numbers missing. Compare this to

1 3 8
[4 0 O]
which is. This is a 2 x 3 matrix.

Now, we use M (m,n) to mean the set of all matrices with size m x n. So
the first table would belong to the set M (38,4). The first matrix would belong
in M(2,2) and so on.

Some special matrices exist such as column vectors like

This is a matrix, and is 2 x 2.

1
2
3

which belongs in M (3,1). Importantly, this is also in R™, which is the set of all
n-dimensional column vectors. This vector is also in R3. For posterity, entries
must be real numbers.

We may also deal with something like C?, which would be three entires which
are complex numbers. For instance,

1414
1—14
2+ 3

is not in R™ but is in C™. Most of the time, we will working in R™.
Row vectors also exist too. For example,

1 2 4 —5]

is in M (1,4) as a four dimensional row vector.
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1.3 Algorithms and Operations on Matrices
1.3.1 Addition

Addition of two matrices is well defined, but the two matrices must be of the
same size. Two matrices of size 5 x 3 can be added, but we can’t add, say, a
5x4toaldxd

For notation, If we represent a matrix with a capital letter, (such as A)
then we refer to its entries in general with the subscripts ¢j (such as A;;) but
sometimes with its lowercase letter (such as a;;). With this notation, ¢ refers
to the row and j refers to the column. Thus, we can write for a given m x n
matrix,

a1 ai2 e A1n

a1 a2 e agn
A =

Am1 Am2 cee Qmn

Then, the sum of two matrices A + B is defined as (a;; + b;;). Thus,

a1 + bi a2 +biz ... aip+bin

ao1 + bay az2 +by2 ... aoy +ba,
A+ B =

Am1 + bml Am?2 + bm2 CIE Amn + bmn

For example

1 3 4 " 33 0] |4 6 4

2 -1 5 2 2 -8/ |4 1 -3
note imporantly, if we sum two z X y matrices, the result is still z x y. The sizes
do not change. As another example,

1 3 4 + 1 2
2 -1 5 4 0
is not defined.

1.3.2 Scalar multiplication

This is defined by ¢ - A, where ¢ is some real number and A is a matrix. Here,
c- A is defined as A with all of it’s entires multiplied by ¢, which gives us
c-A=(c-a;). As an example,

G138 4]_J2 6 8
2 -1 5] |4 -2 10

Importantly, 0 - A does not give 0, but the zero matriz. So
0 13 4 (0 0 0
2 -1 5/ |0 0 0
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Scalar multiplication by negative numbers behave as expected, so we have
both that
A-B=A+(-1)B
and
A — B = (ai; — bi;)

An example is not needed here.

1.4 On Systems of Linear Equations

An extremely common reason for why people study linear algebra is to solve
systems of linear equations. Something such as ax = b is fairly trivial to solve.
Something like ax + by = ¢ has infinitely many solutions, but not if we add in
another equation like so:

ar+by=c
cx+dy=e

These are also pretty easy to solve with algebraic methods (substitution and
elimination etc).

So solving a 2 x 2 is pretty easy, but what about solving a 10 x 10?7 If we
try substitution, we are almost dead in the water. This is horrendously difficult
to do. Elimination is a bit better, but still complicated. Which variable do we
solve for when?

The key is to use a matrix to solve them.

2 Day 2: June 11

2.1 What is a Linear Equation and What is a System of
them?

What is a linear equation? We say that an equation is linear if and only it is in
the form
a1r1 + asxs + ...+ apx, = b.

Then naturally, a system of linear equations is just a a set of them:

a11r1 +aexe + ...+ a1z, = by

2121 + A22%2 + ...+ AopnTy = bg

Am1T1 + Am2Z2 + ...+ AppTyn = bm

Here, we have n variables and m equations. These are considered linear because
all variables z,, exist solely in first order expressions, such as 2z or 3y. Something
like 22 or sin(z) is not linear.
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Naturally, we care about finding solutions to the system, that is, finding all
possible n-tuples
x1
Z2

Tn

that satisfy all equations.

We’ve seen before that something like 5x = 10 is easy to solve — just divide
both sides by 5. For a system of two linear equations (of two variables), we can
use substitution and elimination.

2.2 Discerning the Number of Solutions

But before solving, it may be worth asking if the system is even solvable in the
first place. And how many, if at all?

An intersection of two lines in the zy-plane is the classical representation
of the solution of a 2 x 2 system, where the intsersection represents a point
which lies on both lines, so it naturally satisfies both equations. In this case,
the solution is unique. But is this the only possibility? No. The two lines
(technically, the two equations) could completely overlap and thus be the same.
Thus all points on the line are solutions to the system, and there are infinitely
many solutions. There are also systems where the two lines don’t intersect (in
R?, they would be parallel), and there are no solutions to the system.

So,

There are three different situations:
e There exists a unique solution.
e There exists infinitely many solutions.
e There do not exist any solutions.

This generalizes to arbitrary equations/dimensions.

For instance, in three dimensions, the system

a;T +apy + a3z = by

a1 + azy + azsz = by

as1T + azey + azzz = bs
represents three planes. If there exists a unique solution, it is the single point
where all three planes intersect.

Things get a bit more complicated with overlap, but not by much. If
two planes completely overlap but intersect with a third, the intersection line
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represents infinitely many solutions. If all three planes overlap, there are infinitely
many solutions that lie on the plane.

Of course, if not all of the three planes intersect, then there exist no solutions
to the system.

In higher dimensions, the equations are now hyperplanes (planes in multiple
dimensions).

2.3 Solving a Linear System

Note that when we did elimination, for instance of the following system:
2z — 3y = —1
204+ 3y =5

when we add the two equations, we have that 4x = 4. But we didn’t have to
add the two equations directly. We could just add the numbers. You didn’t
physically write out (2z — 3y) + (22 + 3y) = —1 + 5, did you? No. We just
summed the coefficients.

Instead, we can reprsent this as a matrix:

2 -3 -1
2 3 5
This is a 2 x 3 matrix. For posterity, the number of rows is the number of

equations, and the number of columns is the number of variables +1. When we
applied elimination by adding the two equations, our matrix became

2 -3 -1
4 0 4
The bottom row reprsents the equation 4x 4+ 0y = 4 or simply just 4o = 4. Then

to solve for y, we want something of the form 0x + Cy = b, so we get rid of the
2 in the first row by subtracting one half of the second row:

0 -3 -3
4 0 4

Then to actually find z, we can divide the second row by 4. The same principle
applies to the first row to give us

01 1
1 01

which gives us that y =1 and =z = 1.
This process is known as Gaussian elimination. This is the process of:

2—3—1:>011
2 3 5 1 01

Augmented matrix Solution matrix
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2.4 Special Matrices

We can also describe the coefficient matrix which is obviously just the coefficients.
In this example, it would be

2 -3

;)

which is a 2 x 2 matrix. The number of columns is the number of variables and
the number of rows is the number of equations.
As an example, the following system

r+2y+z=1
3r+y+42=0
20 +2y+32=2

would have an augmented matrix size of 3 x 4:

1 2 1 1

31 40

2 2 3 2

We can also go backwards. The following augmented matrix

1 21
3 1 4
2 2 3

has three equations and two variables and is reprsented by the system

r+2y=1
r+y=4
204+ 2y=3

As a pathological case, the following augmented matrix

SO =

0 2 3
1 11
0 0 2

yields the equation 0 = 2, an obvious contradiction. Thus, the system the matrix
represents has no solution.

A matrix such as
1

1 2 3
011 2
00 1 -1

isn’t as nice as a solution matrix, but is still quite nice. Once we have that

z = —1, we can find that y + 1(—1) = 2 which gives us y = 3, and then get that
x+2(3)+3(—1) =1 to find that z = —2.
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Identity Matrices

A special type of matrix is an identity matrix. For instance, the 3 x 3
identity matrix is

which is the “coefficient part” of a solution matrix of a system of three
equations in three variables. Higher degree versions exist, which are
square matrices with 1s on the down-right diagonal and all other entries
Z€ro.

A “worse” version of an identity matrix is

Diagonal Matrices

These are matrices where all non-diagonal entries must be zero. For
posterity, diagonal entries can be zero. For example,

1 0 0
0 3 0
0 0 4

is a diagonal matrix.

\ J

An “even worse” version of a diagonal matrix is an upper-triangular matrix:

Upper-triangular matrices

These are matrices where everything except the diagonal entry and above
must be zero. For example,

O O N
SN =
w N O

is an upper-triangular matrix.

We can also define the lower-triangular matrix similarly. I won’t bother.

2.5 Gaussian Elimination Revisited

The goal of Gaussian elimination is to transform the coefficient matrix part of
an augmented matrix into an identity matrix. This is done by first transforming
it into an upper-triangular matrix, before reducing it to an identity matrix.

We can’t just rewrite the numbers in a matrix. That would be redefining the
system, which is not what we want to do (find solutions). Here are things we
can do:
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e Swap the order of two rows.
e Add a multiple of a row onto another row.
e Multiply a row by a non-zero constant.

These are known as elementary row operations. It’s pretty clear that the first
and third don’t change the system.

3 Day 3: 2019 June 12

We will talk more about Gaussian elimination.

3.1 On Gaussian Elimination

Review of Yesterday

The goal of Gaussian elimination is to transform the coefficient matrix
part of an augmented matrix into an identity matrix. This is done by
first transforming it into an upper-triangular matrix, before reducing it
to an identity matrix.

We can’t just rewrite the numbers in a matrix. That would be redefining
the system, which is not what we want to do (find solutions). Here are
things we can do:

e Swap the order of two rows.
e Add a multiple of a row onto another row.
e Multiply a row by a non-zero constant.

These are known as elementary row operations. It’s pretty clear that the
first and third don’t change the system.

As an example, take the following system of linear equations

r+2y+z=1
3r+y+42=0
20 +2y+32=2

which is represented by the following augmented matrix:
1 2 11
31 40
2 2 3 2

Before we get solve the actual system, we can discuss some theorems about
matrix representations.
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Definition of Row Equivalence of Matrices

We say two matrices A and B are row equivalent if and only if there is a
sequence of elementary row operations that transforms A into B.

So the two matrices

1 2 1 1 31 40
31 40 1 2 1 1
2 2 3 2 2 2 3 2
are row equivalent.
31 40 1 2 1 1
1 2 1 1 0 -5 1 -3
2 2 3 2 2 2 3 2

are also row equivalent, as the second row is the first row minus three times the
second. This isn’t trivial to notice, so I wouldn’t bother (I didn’t see it until it
was pointed out, either.)

The notion of row equivalence is useful as it yields the following theorem:

“Theorem 1.3”

Suppose that A and B are row equivalent. Then the system having A as

an augmented matrix has the same solution set as the system having B
as its augmented matrix.

This should be pretty straightforward: if two matrices are row equivalent,
then they should have the same solutions under a system of linear equations.
Again, this is because all elementary row operations maintain the solution set of
a matrix, and two matrices are row equivalent if and only they can be obtained
by means of elementary row operations. This theorem technically validates the
method of Gaussian elimination.

3.2 Echelon Form

The best situation is that Gaussian elimination correctly turns the coefficient
matrix into an upper-triangular matrix, but sometimes this is not achievable. If
our entire system is simply

T—2y+3z=4

we get the augmented matrix of
[1 -1 3 4]

which cannot be modified to get an upper-triangular matrix.
So we can generalize the definition of an upper-triangular matrix to echelon
form:
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“Definition 1.11:” Echelon Form

A matrix A is in echelon form if and only if it satisfies the following
conditions:

e The first nonzero entry in any nonzero row occurs to the right of
the first such entry in the row directly above it.

e All zero rows are grouped together at the bottom

For example, let’s look at
1 2 11
31 40
2 2 3 2

This is not echelon form, as the second row’s first nonzero entry is not to the
right of the one directly above it, as the first entry of the first row is in the same
column as the first entry of the second row.

As another example,

11
0 2
0 0

W N =

satisfies the condition. For instance, in the second row, the first nonzero entry,
2, is to the right (column wise) of the first nonzero entry in the one above it, 1.
The same principle applies to the third row.

Here’s another:

(1
0
this is also in echelon form. 2 is to the right of 1, and 3 is to the right of 2.

Here’s yet another:

This fails to be in echelon form, as 1 is to the left of 3 column wise.
Here’s yet another:

0 0 0 3]

this is not in echelon form, as there is a zero row that is not at the bottom.

It should be pretty straightforward to note any upper triangular matrix is in
echelon form.

With echelon form, we can generalize Gaussian elimination to now look like
this:
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A —— Echelon form —— I

Every matrix A is row equivalent to a matrix in echelon form.

With this, we can always guarantee the first step of Gaussian elimination.
Let’s go back to the following example:

1 2 11
31 40
2 2 3 2

We want to get this to echelon form. The first row is fine, but the second and
third rows both have a nonzero entry as their first entry that is not to the right
of the first entry of the first row column wise. The method is to subtract a
multiple of the first equation such that the second rows first entry becomes zero.
We can do this by having A, = Ay — 34; and A3 = A3 — 2A;. This gives us

1 2 1 1
0 -5 1 -3
0 -2 1 0

1 2 1 1
0 -5 1 =3
0 0 3 6

Now the matrix is in echelon form.
From echelon form, we can see if a solution set exists or not. Recall that if
you see a row such as

[0 ... 0 a]

and a is not zero, then the solution set does not exist. If we do not see a row
like this, there must exist a solution.

3.3 Row Reduced Echelon Form

We now define a special kind of echelon form:
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“Definition 1.13:” Row Reduced Echelon Form

A matrix A is in row reduced echelon form if and only if
e A is in echelon form.
e All of the pivot entries are 1.

e All the entries above the pivots are 0.

A pivot entry is the first nonzero entry in a nonzero form.

Note that the identity matrix is in row reduced echelon form.
The following matrix is in row reduced echelon form:

12 0 3 0
001 10
0 00 01

We can then generalize Gaussian Elimination to be:

A —— Echelon form —— Row Reduced Echelon Form

For example, take the echelon form matrix

1 2 1 1
0 -5 1 -3
0O 0 1 2

DO Ul =

Then to ensure all entries above the pivots are 0, we subtract multiples of rows
below them, from the lowest row to the top. So we do A; = A; — Az and
A2 = A2 — 1/5A3 This giVGS

(1 2 0 —1]

01 0 1

0 0 1 2|
Then we do A; = A; — 2A; which gives

(1 0 0 -3

01 0 1

0 0 1 2|
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which gives the solution

Sometimes we will want to arrange rows before applying some row reduction.
For example,

0 -5 1 -3
1 2 1 1
2 2 3 2

doesn’t work. The first row has a zero, which can’t be made into a 1. So we can
just move it somewhere else. Gaussian elimination takes care of the rest.
Generally speaking, you want the first rows pivot to be a 1 so you don’t run
into fractions.
As another example, consider the matrix

11 1 1
4 3 5 7
2 1 3 6
After a series of row reduction, you get
1 1 11
0 -1 1 3
0 0 0 1

The bottom most row has that 0 = 1, so we can conclude that there is no
solution.

4 Day 4: 2019 June 13

Previously, we discussed the cases where Gaussian elimination yields a single
unique solution or no solutions. Today we will discuss another case.

4.1 Infinitely Many Solutions

Consider the equation z — 2y = 4. If we graph the line as y = 1/2z — 2, all
points on the line are solutions. Though subtle, we the equation does not give
us a solution. In reality, it’s more like

2=

Here, we let s be an arbitrary constant. We can actually factor into constant
and variable terms like so:
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There is an important geometric interpretation to this. The vector [J 18,

well, a position vector on R?, so if we are able to multiply it by a constant s,
we can arbitrarily stretch or compress and even flip directions. The set of all

forms a line. The constant vector {_02] is just some constant

HREHE R

the geometric interepretation of our vector sum is actually the line created by
the variable vector shifted by the constant vector. For posterity, all values s
yields a different solution.

What about in 3 variables? Consider if we have the equation 2x —y+ 3z = 1.
Then we have that = (1+y—3z)/2. Importantly, both y and z are independent
and free. We can then interepret the solution set, using s and ¢ as constants as

possiblities of s E]

vector. Since we have that

7] 14534
Yyl = S
z t

which we can then factor by constants and variables to yield

_3
2

+ s +t] 0
1

N e gy
I

S Ol

O =N

Importantly, the first vector is constant, but the latter two are variable. We
know from multivariate calculus that the expression 2z — y 4+ 3z = 1 forms a
plane in R?, but we can derive this from linear algebra. Note that we have two
free independent vectors, which actually is a subspace of R? which spans a plane.
Then, the full vector expression is simply the plane spanned by the two vectors
shifted by the constant vector.

Let’s consider the system

r+y+2z+w=1

3z —4dy+z+w=2
dr — 3y + 32+ 2w =—1
5 — 2y +52+32=0

which simplfies to
11 2 1 1
0 -7 -5 -2 -1
0 0 0 0 -4
0O o 0 0 o0

which fails to have a solution, since the third row states that 0 = —4.
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But what if we can vary the constants? That is, given

r+y+2z+w=a
3z —4dy+z+w=>
dr—3y+3z+2w=c
Sr —2y+5z+3=d

can we ensure ¢ solution exists? The problem, again, is caused by the third and
fourth rows which state that 0 = 4. So if we have something like

1 1 2 1 a
3 =4 1 109
4 -3 3 2 0
5 -2 5 3 0]
we are good.
Let’s try solving ) )
1 1 2 1 a
3 4 1 109
4 -3 3 2 ¢
5 -2 5 3 d]
After row reduction, we have
1 2 1 a

-7 -5 =2 b—3a
0 0 0 c—b—a
0 O 0 0 d—b—2a

O O =

which has that c—b—a = 0 and d—b—2a = 0. Note that in our original situation,
this was not true, so there were no solutions. If we take these conditions and
put it into an augmented matrix, we have that

—1—110:>—1—1100:>—10—1—10
-2 -1 0 1 0o 1 -2 10 0 1 -2 1 0

The first column corresponds to a, the second b and so on. We use this to
introduce a related concept to pivot entries:

Pivot Variables and Free Variables

A variable that has a pivot entry in its corresponding column is said to
be a pivot variable but a free variable otherwise.

To further solve, we aim to solve for the pivot variables in terms of the free
variables.

a —s+t -1 1
b 2s —t 2 ‘ -1
c| s - 1]t 0
d t 0 1

20 Made with © in ETEX.



Linear Algebra Notes DeVon Herr (Summer 2019)

Note that this vector sum expresses all constant vectors that yields a solvable
system.
Let’s consider the system

W = = W
TN DN
N W W = Ot
W = =W
N = OO =

which is a bitch to simplify if you don’t make the very first pivot entry 1 by
switching rows. If you don’t, you end up having to divide the first row by 3
which is nasty. Gaussian elimination gives us

10 -1 1 -1
01 2 0 1
00 0 0 O
00 0 0 O
Transforming this into equation form, we have that x — z + w = —1 and

y + 2z = 1. Solving for = and y by letting z and w be constants, we have that
x=—2z+w—1and y=1-—2z. This gives us

T —s+t—1 -1 1 -1
y 1—2s 1 -2 0
2| = s 1ol ™1 o
w t 0 0 1

It’s worth noting that different expressions exist for solution sets. This is
because for a given plane, there are infinitely many vectors. Thus, there are
infinitely many combinations of two vectors which span the plane.

4.2 Vector Spaces

We define a vector space as a set of vectors with some additional properties.
We'll call it V. This set is closed under addition and scalar multiplication.
In total, we have 10 properties. They are as follows:
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Given three vectors X,Y,Z € V
e X+Y eV
e X+Y=Y+X
e X+ Y+2)=(X+Y)+Z

There exists some element (a zero vector) such that X +
Zero vector = X

e For any X, there exists a not necessarily unique element —X € V
such that X + (—X) =0

These are also known as group axioms.

For any scalars k and [,

e kX eV

k(X)) = kIX

E(X+Y)=kX +kY
o (k+1)X =kX +1X
e 1X =X and 0X = 0.

5 Day 5: 2019 June 14

We discussed what a vector space is. To review,
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Review

We define a vector space as a set of vectors with some additional properties.
We'll call it V. This set is closed under addition and scalar multiplication.
In total, we have 10 properties. They are as follows:

Given three vectors X,Y,Z € V

e X+YeV
e X+Y=Y+X

X+(Y+2)=(X+Y)+2

There exists some element (a zero vector) such that X +
Zero vector = X

For any X, there exists a not necessarily unique element
—X €V such that X + (—=X) =0

These are also known as group axioms.

For any scalars k and [,

e kX eV

E(IX) = kIX

E(X+Y)=kX +kY

(k+1D)X =kX +1X
e 1X =X and 0X = 0.

5.1 Examples of Vector Spaces

It’s worth noting that M (m,n) is a vector space. I don’t know why this is being
covered, but we can verify this for M(2,2).

e The group is indeed closed under addition. a b + |*2 bz =
C1 d1 C2 d2

ar+az by +bo
c1+co di+ds

e Matrix addition is commutative

e Matrix addition is associative

e The additive identity exists, where 0 = {8 8]
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An additive inverse exists for all elements, where A + (—A) = 0.

Scalar multplication is well defined. ¢ a b = | cb
c d cc cd

Scalar multiplication is associative.

Scalar multiplication is distributive — commutative with respect to a scalar
and the sum of two matrices.

Scalar multiplication is distributive — commutative with respect to the sum
of two scalars and a matrix.

e A multiplicative identity exists.
Some more:

e R? is a vector space.

Interestingly, the set of only [8 8} is a vector space as well.

e The set of only { O] fails to be a vector space, as it is not closed under

1

0 1
addition.

o The set S = {a- [ﬂ ,a € R} is a vector space. Addition is trivially

commutative and associative as this space uses vector addition. The same
applies for scalar multiplication being associative and distributive in both
regards. All that’s necessary is to prove that it is closed under addition
and scalar multiplication.

1 . .
e The set S = {a- [2] ,a € RT} is not a vector space as it lacks a zero

vector, and thus, an additive inverse.

Here’s a more interesting one:
P, (a,b) = {All of the polynomials defined on (a,b) whose degree < N}

So Py(a,b) is the set of all constant, linear and quadratic functions. This is
indeed a vector space, we can add polynomials together and get another one,
apply scalar multiplication to get anothe one, and so on.

5.2 Subspaces

A subset is pretty obvious. In fact, I can’t even define it with words. The sets
S={a- [;} ,a € R}t and S = {a- B] ,a € RT} are both subsets of R? but only

the former is a subspace.
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A subspace is a bit more involved:

“Theorem (1.3)” Subspace

Firstly, a subspace must first be a subset. A subset W of a vector is a
susbspace if and only if the following hold:

e If X and Y are elements of W, then X +Y € W
e For any X € W and a scalar ¢, cW € X.
e 0e X

That is, a subset is a subspace if and only if it is a vector space itself.

\. J

Note that R? is not a subset of R?. The number of entries has to be consistent,
otherwise there’s no reasonable way to map the first onto the second. Of course
we can just say “add a z” component, but then there has to be a choice of
where (first, second or third entry) and at that point it’s insufficient. There is
no canonic embedding.

5.3 Linear Combinations

“Definition 1.3” Linear Combinations

Let S = {A;,...,A,} be a set of elements in the vector space V. An

element C' is a linear ocmbiation of A; if and only if there exist scalars b;
such that
C=b41+...0,A,

For instance, if S = {A; = Ll)] J Ay = [(1)] }, then [_23} is a linear combination,

1
as C =2A; + (—34,). If C = |2{, C is not a linear combination.
3
Here’s a harder example: Let S = {4; = [1 0 O] JAg = [1,1,0] LAz =
1 0 2]}and C=[-1 2 4]. To determine if C is a linear combination, we
see if we can find constants a b and ¢ such that

(-1 2 4] =al 0 0]+0b[1,1,0] +¢[1 0 2]
which when multiplied out and solved for constants:

—1l=a+b+c
2=0a+b+ 0c
4 =0a+ 0b+ 2¢
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which we can then set up as an augmented matrix and solve

11 1 -1
01 0 2
00 2 4

Since the solution exists, C' is indeed a linear combination.

5.4 Linear Dependence of Sets

There exists an application of linear combinations:

Linear Dependence of Sets

Let S be a vector space. S is linearly dependent if at least one of A; is a
linear combination of the other elements of the other elements in S. S is
said to be linearly independent otherwise.

We also define the set of solely the zero vector as linearly independent.

J

Theset S = {[1 0 O] , [O 1 ()] , [0 0 1} } is linearly dependent. There’s
no way to write any of the vectors as a linear combination of the others. However,
we have to check every single vector. If a single vector isn’t a linear combination
of the other vectors, it does not rule out the possibility of the another vector
being a linear combination. Here, we can simply not that for each vector, it has
a nonzero entry where all other vectors have said entry 0.

For instance, the set S = {[1 0 O] , [O 1 O] , [2 -3 O] , [0 0 1}} is
linearly dependent as the third vector can be written as a linear combination of
the other vectors even though one of them cannot.

For posterity, if the set .S has solely two vectors, we can verify just by checking
if the two vectors are a scale factor of eachother.

6 Day 6: 2019 June 17

We discussed linear combinations and linear dependence.

6.1 Span

“Definition 1.5:” Span

Let S = {A1, Aa,..., Ai} be a set of elements in a vector space. Then
spansS (verbally, the span of S)is that set of all elements of the form

B =ciA) +cAy+ ...+ LAk

where ¢; are scalars.
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So the span of a set of vectors is the set of all possible linear combinations of
the vectors. We can also write that

span(s) = {141+ ...+ ckAr} c1,...cx €ER

For example, if S = B} , what is span <[(1J ) ? By definition, we have that

the span is equal to ¢ ol which is a straight line. More specifically, it is the
x-axis.

Similarly, span ([(ﬂ) is the y-axis.

More intrestingly, span <[8}> is the origin. Algebraically, it is the set { [8} }.
Most of the time a span of a set of vectors contains infinitely many
vectors, but this is a special case.

121\ . .. .

span ({0] , {0]) is still just the z-axis. Note that even though we have
another vector, it still doesn’t affect the span since the two vectors are on the
same line.

What if the two vectors aren’t on the same line? span ([(ﬂ , [ﬂ) is R2. To
see why, we apply the definition of span to get

1 0 _|1a
o]+ [ - 2
to which we can pick arbitrary reals ¢; and ¢ to get all possible tuples B] of
R2.
1 |2 .
For a harder example, find span <[O} , [1] ) Interestingly enough, the span

is also R?. Geometrically, we can construct a linear combination by drawing an
arbitrary vector, and using some parallelograms.

6.1.1 Color

One potential application/analogy with linear dependence and linear combina-
tions is that of mixing color. A set of only yellow and orange would be linear
independent, since you can’t get yellow from orange and vice versa. But some-
thing like a set of red, orange, yellow would not be lienarly dependent, since you
can mix red and yellow to make orange. What if we add green? Still dependent,
since there exists at least one vector that is linearly dependent (orange is still
there). It doesn’t matter if green is linearly independent. The set of green, red
and yellow is linearly independent.

The span of a pallette of colors would then be all possible color combinationst
hat can be yielded from mixing the colors.
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6.2 Test for Independence

1 0 0
Recall that previously the set S = 0f,]|1],|0 is linearly dependent. This
0 0 1
1 0 0
was obvious to see, but what about something like S = 20,1 11,10] p?
4 -3 5
We first proceed by checking
1 0 0
2 =a | 1|+0]0
4 -3 5

which is not possibe, as the first entry is 1, whereas the first entry for the other
two matrices are zero, so it is not possible. For the second vector, we check

0 1 0
1| =a|2]+0b]|0
-3 4 5]
which has that a = 0 in order to match the first entry. For the third vector, we
have that _ -
0 1 0
0l =a 2] +0]| 1
5 4 -3

which gives that b = 0 in order to match the second entry. However, this yields
a contradiction, as if a and b are zero, we end up with the zero vector. Thus,
the set is linearly dependent.

In general, if we have an upper or lower triangular matrix, the vectors are
linearly independent. We can take this further and say that if a single vector has a
zero entry, but all vectors have nonzero entries, the matrix is linearly independent.
Stair-case like structures (instead of upper/lower triangular matrices) are also
linearly independent.

This was not fun to do. To make this faster, we make use of something
known as the the test for independence. This is an equivalent though much
faster method.

Note that when we check for linear combinations, we check if the following
systems, well, hold:

A1 = G%AQ-FG,%AQ-F... —l—aiAk
Ag = a%A2+a§A3—|—... —I—CL%Ak
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We can rearrange to get

0=—A;+alAy +alAy +... +al Ay
OZ—AQ—FO/%AQ—FGSA:J,—F...—FGiAk

0=":

Summing, then dividing by n — 1 (don’t worry about it, it’s not important to
understand this), we have that

0=a1A1 +asAs + ...+ arAg
which has the trivial solution a; = 0. But if we have other solutions, say we have
0=245 — 345

we would have that As = 3/2A3. We would then say that these two are linearly
dependent. This applies for any equation/any group of vectors.

If we have a nonzero solution, the set is linearly dependent. If the only
solution is the zero vector, the set is linearly independent. As a sidenote, systems
where the constant vector is the zero vector are homogeneous systems.

As another example, let’s reconsider the original problem which then asks us
to find constants a b and ¢ such that

1 0 0 0
a |0l +b (1| +c |0 =[O0
0 0 1 0

This yields the augmented matrix

O O =
o = O
_ o O
o O O

which, as the identity matrix, yields that a,b,c = 0, concluding that the set is
indeed linearly independent.

1 1 2]
What about the set S = 2,10, 2] p? Translating into row reduced
-1 2] [1
form, we have )
1 010
01 10
0 0 0 0]
which tells us that c is free, and a and b are linearly dependent. From this, we
a -5
have that a + ¢ =0 and b + ¢ = 0. Solving, we have that |b| = |[—s| which
c S
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-1 a -1
yields the vector s | —1|. Letting s = 1, we have that |b| = |—1| which gives
1 c 1

us that —A; — Ay + A3 = 0.

Tomorrow, we will discuss dimension, an integer measurement that refers to
how “large” a vector space is. This is how we can conclude R® > R! in some
sense.

7 Day 7: June 18

We will continue or discussions on vector spaces.

7.1 Dimension of a Vector Space

“Definition 2.4:” Dimension of a Vector Space

The dimension of a vector space V' is the smallest number of elements
necessary to span V. That is, V has dimension n if and only if there
exists a set {Aj, As, ..., A, } whose span equals V', while no set of n — 1
or fewer elements of V' spans V.

This is usually a non-negative integer {0,1,2,...}. We denote this by saying
dim V.

Geometrically dim (Rz) = 2. This is because R? is a plane and we only need
two vectors. This is not possible with any fewer, as a single vector cannot span
R2?, as a single vector spans a line. Trivially, zero vectors doesn’t work either.

The same logic works for R?, dim (RS) =3.

“Definition 2.2:” Basis

A basis for a vector space V is a linearly independent set

{A1, Ay, .. Ay}

of V that spans V.

For example, the standard basis of [(ﬂ , [ﬂ is the basis of R%2. The same

idea applies for R? with its own basis.

7.2 Vector Spaces Revisited

Our old definition was abstract. Most vector spaces are infinite.

As an analogy, consider preperation to paint. We want to bring the fewest
number of paints while still enabling us to paint whatever we want. For instance,
if we take red, blue and yellow, we can get any color we want.
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The same principle here applies for a vector space, we want the know the
fewest number of elements such that it spans our given vector space. We can
obviously take more elements then we need and still span a given vector space,
so for a given basis of a vector space, we have that

dim V < The number of elements in the basis.

“Proposition 2.1”

Let {A1,As,..., Ar} be a set of elements in V' such that Ay is a lin-
ear combination of {Aj, Ao, ..., Ap_1}. Then span ({4, As, ..., Ax}) =
Span ({Al, AQ, e ,Akfl}).

For example, if we use the standard basis for R? then take some random
element in R? and add that to the basis, then this extra element doesn’t do
anything.

To be even more concrete, we can do

Ul L] )

and find that the span is given by

C_QH +bm +c[2,1]

or C'=aA; 4+ bAs + cAs. Since As = 2A; + 1/2A,, we can just replace the span
of with
Cc = aA1 + bA2 + C<2A1 + 1/2142)

which then simplifies to (a + 2¢)A; + (b+ 1/2¢)As, so we can just take a tuple
of the three vectors and replace it with only two.

The principle is that we can remove vectors which are linearly dependent
on the rest and we don’t change the span. If we have a set of four linearly
independent vectors and remove one, there isn’t a way to get it back from the
other three. Whereas if we have a linearly dependent set, we can remove a vector
and still get it “back” by using our original vectors.

We then have that

dim V' = Smallest number of elements in a given basis.

In linear algebra, dimension is finite. Additionally, dim M (m,n) = m X n.
For a very fast demonstration, consider this example of M (2, 2):

a b 10 0 1 10 00
o=l il ol eelo o el )
To generalize, this is because is M (m, n) has m x n entries, so we can have m xn
degrees of freedom.
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Let Py(a,b,c) be the set of all polynomials az? + bx + c¢. This has dimension
3, because we can think of the span as a linear combination of 22, bz and c. As
a result the basis is {z?,z,1}.

Checking if a given basis is linearly independent is easy (we have the test for
linear dependence), but it’s not so easy to check if it actually spans the vector
space we want. For this, we have the following:

“Theorem 2.6”

Suppose that the vector space V' can be spanned by n elements. Then

any set containing more than n elements must be linearly dependent.
That is, if S = {43, As,..., A, } is a subset of V' where m > n, then S is
linearly dependent.

We don’t have to apply the test of linear dependence if we can just test with
this first.

Let V be a vector space, and dim(V) = n. Then all bases of V have
exactly n elements. In particular, the dimension of V' is the number of
elements in any basis of V.

8 Day 8: June 19

We will further our discussion on dimension. Last time, we defined what
dimension and basis were.

“Theorem 2.6”

Suppose that the vector space V' can be spanned by n elements. Then
any set containing more than n elements must be linearly dependent.
That is, if S = {43, As,..., A, } is a subset of V' where m > n, then S is
linearly dependent.

“Theorem 2.7”

Let V be a vector space, and dim(V) = n. Then all bases of V' have
exactly n elements. In particular, the dimension of V' is the number of
elements in any basis of V.

8.1 Proving Sets as Bases

We will discuss another theorem:
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“Theorem 2.8”

Let V be an n-dimensional vector space. Then:

e Any set of n elements that spans V' must be linearly independent
and thus is a basis.

e Any linearly independent set of n elements of V' must span V and
thus is a basis.

Recall that {A1,...A,,} is a basis of V' if and only if:
e The span of the set is V'
e All A; are linearly independent.

However, checking these conditions are not straightforward. For the second, we
have the test for independence. But for the first, we are currently out of luck.
We have to check if a linear combination of the vectors can give us any arbitrary
vector in V/, but this actually introduces more variables. This means checking if
a set of vectors is a basis of a vector space can be difficult.

For instance, V = R? and our vectors are

4 10
=372
we can apply the test for linear independence by solving

rAy +yAy = {8}

and seeing if there exists solutions that are not x,y = 0.
For the latter, we have to check if

aA; +bAy = [g}

and see if a solution always exists for arbitrary choice o and S.

There’s a trick, however. We have a failsafe that so long as the dimension
of the vector space is the number of vectors, we only need to check one other
condition. Going back to our previous example, since the dimension of R? is
trivially 2 and we have two vectors, we do indeed have this “new” condition
satisfied. Then all we have to do is to check if

o]

has a non-zero solution. This is because having a n dimensional vector space
with one of the conditions implies the other. In general, we only have to show
two of the three conditions are met for a set of vectors of V' to be a basis:
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e The dimension of V' and the number of vectors are the same
e The set of vectors is linearly independent

e The span of set of vectors is V'

. Prove that this set of vectors is a

1 2
LetX1: 2 ,XZZ 0 )X3:
1 2

== =

basis of R3

It is very trivial that the dimension of R? is 3 and that we have three vectors,
so we have one down. All that’s left is to prove one of the other conditions. I
think showing that it is linearly independent is slightly easier, so we will proceed
to find the homogenous solution

0
.’EXl +yX2+ZX3 = 0
0

By Gaussian elimination, we have that

1 2 1 0
0 -4 -1 0
0 O 0 O

which does admit a non-unique solution. Continuing to get to row reduced
echelon form, we have that

10 1/2 0
01 1/4 0
00 0 0

which implies that z is a free variable and x and y are pivot variables. Thus, we
can let z be some arbitrary constant s and get that

T —1/2s -1/2
yl = |—-1/4s| =s |—1/4
z S 1

So this fails to be a basis.

1 2 1
Let X1 = |2|,Xs=|0|,X3= |1]|. Prove that this set of vectors is a
1 2 2

basis of R3
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By the same logic, we have the number of vectors matching the dimensions,
so we now seek to find if its linearly dependent or not. By Gaussian elimination,
we have that

10 00

01 00

0 010
which has that x, y, 2 = 0, which means that they are indeed linearly independent,
so the set does indeed form a vector space.

In the homework, there are generally two kinds of problems:

e Find a vector space V'
e Find a basis of V

but these are kind of the same thing. This is because a vector space is defined
as the span of a basis, so either way we need to find a basis at some point.
The following two statements are essentially equivalent:

The basis is {Al, AQ, Ag}

and
RS = Span (AQ, AQ, A— 3)

note however the word span. It makes a difference!

8.2 Special Kinds of Vector Spaces

“Definition 1.17:” Multiplication of a Matrix by a Vector

Let A = [Ay, As,...A;] be an m x n matrix, wehre A; are column
vectors of A and let X € R". We define the product of A with X by
AX = 21A1 + XA + ... + 2, A, where
Z1
T2
X =

Ln

It’s important that the number of columns of A matches the number of
entries in X otherwise some products don’t get well defined. The product

1 2 3| |1
4 5 6|12
is not well defined but

b2 el o[l o 0[] - 1)
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For posterity, one can note that the product of an m x n matrix with a n x 1
vector yields a m x 1 vector.

Transpose

Am1 Am2 coe Qmn

Then we define the tranpose of A, A?, pronounced A-transpose, as the
matrix where all rows and columns are exchanged:

ai;p a1 ... QGml
ai2 a9 000 Am?2
a1p A2 ... Amn
- 7

With this in mind, we can change something like

So we can repackage a system of linear equations into one line: AX = b, where
A is the coefficient matrix, X is the variable vector, and b is the constant vector.
Then, a homogenous system of linear equations is defined as AX = 0.

“Definition 1.18:” Nullspace

The nullspace for a matrix A is the solution set to the homogenous system
AX =0.

If we have that A € M (m,n) and X € Null(A), X € R™ for the homogeneous
system of linear equation to be well defined. We have that the nullspace is a
subset of n-dimensional space, so we may be interested if it is also a subspace.
The answer is yes.

We also have that A (cX) = c¢- (AX).

9 Day 9: June 20

We will continue talking about the nullspace.

For any matrix A € M(m,n), we can always find its nullspace. It is the
subspace of R™. We showed that it was closed under addition and scalar
multiplication and that it contained the zero vector. It’s also not too hard to
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check that the nullspace is a subset of R™. From all of this, we can conclude
that it’s a subspace of R™.
Again, null(A) is the set of elements X € R™ such that AX = 0.

9.1 Nullspace and Columnspace as Vector Spaces

We can also think of S as the set of elements X € R"™ such that AX # 0. This is
a subset of R™, but it is not a subspace. It fails all the conditions. Obviously, it
fails to contain a zero element, as zero multiplied by a matrix yields zero, which
negates its existence in the set. What about closure under addition and scalar
multiplication? Then A - (X +Y) = B, where B is an element in the set. This
seems fine. The set is not closed under scalar multiplication, as A - (¢X) = b
where b is in the set, but this gives us cAX = ¢ - b, which isn’t okay for ¢ = 0.

We can think of this as a line. If it goes through the origin, we can say that
it’s a vector space, represented by all scalar multiples of a given vector. But if it
doesn’t go through the origin, we can’t represent it like this (there’s a shift), so
it fails to be a vector space.

9.2 Finding the Nullspace
Solve for AX = 0.

Find the nullspace of

1 2 1
A=1(0 1 1
1 2 1
We find the nullspace by solving
1 2 1| |z 0
1 2 1| |z 0
which gives us the augmented matrix of
1 210
01 1 0
1 210

Note that the augmented matrix is just the matrix A with a zero column vector
tacked on. Now we can solve for it! We apply Gauss-Jordan elimination and get

1 210
01 10
0 0 0 O
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which is consistent so far. Continuing, we have

1 0 -1 0
01 1 0
00 0 O
which tells us that z and y are pivot variables and z is a free variable, so we
can solve for x,y in terms of z. The system reads that  — 2z =0 and y + 2z = 0,

which gives us that x = z and y = —z. Letting z = s, we have that
x ] 1
y| = |—s| =s5|—1
z S 1

We can then say the nullspace is the set of all scalar multiples of the vector
11t
—1| , or even the span of the vector.
1

[ What is the nullspace of the identity matrix? ]

Solely the zero element. The augmented matrix gives us
1 0 00
01 00
0 01 0

which has a solution if and only if we have that z,y, z = 0.

What is the nullsapce of

1 1 -1

01 7

0 0 2

The augmented matrix gives
11 -1 0
01 7 0
00 2 0
which further simplifies to

1 0 00
01 00
0 010

which has only the zero vector.
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Find the nullspace of

o O O
e e e
S O O

This one’s a bit weird. Note from the definition that the nullspace is the set
of all vectors where multiplying the matrix by the vector yields zero, to which it
would be any vector. Since the set of all vectors with three entires is R3, the
rest follows.

Let A be a zero matrix with size M (m,n). What is it’s nullsapce?

Recall that matrix multiplication is only defined of a matrix with size m x n
if the vector is n x 1. Since any vector multiplied by the zero vector is zero, the
nullspace is R™.

Find the nullspace of

N O =
N = O
- = N
|
—_

By applying Gaussian elimination to the augmented matrix, we have that

10 2 3 O
011 -1 0

000 0 O

Here, we have four variables x,y, z, w, where x and y are pivot variables and z
and w are free variables. We can then solve for x and y by getting x = —2z — 3w
and y = —z + w. Since z and w are free, we can assign them arbitrary constant
variables s and ¢. This gives us

T —2s — 3t -2 -3

y| | —s+t | |-1 1

z| s =S|t t 0

w t 0 1

As the set is all linear combinations of these two vectors, the nullspace is a plane
in R2.

Let A € M(m,n). The sanning vectors for the solution set of the system
AX = 0 span the nullspace of A and are linearly independent.

Note that this then implies that the spanning vectors for the solution set is
then the basis of the nullspace.
As an aside, the dimension of the nullspace of a matrix A is given by null(A4).
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9.3 Column Space

“Definition 1.15”

The column space of a matrix is given by the span of the columns of the
matrix.

What is the column space of

O O =

O = O

= O O
-~

R3.

The colum space of a given matrix of size m X n is a subset of R™.

Say we wish to find a basis of the column space of a given matrix. First, we
define what a pivot column is:

A pivot column is a column vector of the original matrix that, when row
reduced, contains a pivot entry.

The basis of the column space is simply the set of the pivot columns of A.
—10 1
span ({[° — 3 1]})
10 Day 10: June 21
We will continue our topics on column space.

10.1 Column Space, Again

“Definition 2.3:” Pivot Columns

Let A = [A1, Aa, ..., AN] be a matrix where A; are the columns of A.

We say that A; is a pivot column for A if x; is a pivot variable for the
system AX = B.

This means we have the logical procedure of

Pivot Entry = Pivot Variable = Pivot Column.

The pivot columns of a matrix A form a basis for the column space of A.
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Note that in order to find pivot entries we use Gaussian elimination to get a
row reduced echeleon form matrix, so in reality the process is more like

RRE = Pivot Entry = Pivot Variable = Pivot Column.

What is the column space of

1 2 -1 3
A=12 2 —4 4|7
13 0 4

Trivially, the column space is given by the span of the four column vectors,
but since we have four vectors in three variables, we have that the set is then
linearly dependent. What if we want the basis of the column space?

We proceed by applying Gaussian elimination. Reducing, we have that

1 2 -1 3
01 1 1
00 0 O

which tells us that the first and second columns contain pivot entires, so that
our basis is the set

1] [2
2|, |2
1| |3

For posterity, the columns in the row reduced matrix do not span the column
space. Be careful! This also tells us that any other column vectors in our matrix
can be expressed as a linear combination of these two vectors.

10.2 Row Space and Rank

“Definition 2.5:” Row Space

The row space of an m X n matrix A is spanned by the rows of A. It is
denoted by Row Space(A).

This also forms a subspace of M (1,n).

Let A and B be row equivalent matrices. Then A and B have the same
row space.

This is because elementary row operations doesn’t affect the row space.

The nonzero rows of any echelon form of a matrix A form a basis for the
row space of A.
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A = EF(A) = Non-zero Rows

Note that in finding either column space or row space, we begin by applying row
reduction.

“Definition 2.6:” Rank

The rank of A is the dimension of the row space. It is computable as the
number of nonzero rows in any echelon form of the matrix A.

Rank Theorem

For any matrix A, the row space and column space have the same
dimension. This dimension is the rank of the matrix.

A fast loose proof is that if a row is nonzero, it must have a pivot entry. Thus,
we expect the number of pivot entries to be equal to the number of nonzero
rows. Thus, the dimension of the column space matches the dimension of the
row space. To be clear, however, even though they have the same dimension,
they are not necessarily the same set.

For instance, consider the matrix

1 00
0 01
0 0 O

The row space is given by the first and second rows, which together span the
zz-plane in R3. However, the column space is equal to the span of the first and
third column, which is just the zy-plane in R2.

“Theorem 2.14”

The rank of a matrix A is equal to the transpose matrix A’.

“Theorem 2.17:” Rank-nullity theorem

Let A € M(m,n). Then

Rank(A) + Null(4) =n

11 Day 11: June 24

Recall that we describe the rank of a given matrix A as

rank(A) = dim(row space(A4))

42 Made with © in ETEX.



Linear Algebra Notes DeVon Herr (Summer 2019)

which, by the rank theorem, that
rank(A4) = dim(column space(A4))

and by the rank-nullity (recall the nullity, null(A) = dim(nullspace(A)) is the
dimension of the nullspace) theorem, if A € M (m,n),

rank(A4) 4+ null(4) = n.

which, for posterity, is the number of columns.

11.1 Quick Proof of Rank-Nullity

Recall that the rank of a matrix A can be computed by the number of pivot
entries. For each pivot entry, there is one pivot variable.

Going back to the rank-nullity theorem, the right hand side is n. In a given
m X n matrix, this is the number of variables. We also know that there are two
kinds of variables:

e Pivot variables
e Free variables

We know that the rank of A is the number of pivot variables. So all that remains
is to show that the nullity of A is equal to the number of free variables to prove
the theorem.

Let’s find the nullity of

1 1 1 10
A=1(0 1 2 4 0
1 1 1 1 0
which becomes
1 0 -1 1 0 10 -1 -3 0
01 2 4 0l=101 2 4 0
1 1 1 1 0 0 0 O 0 O

This implies we have two pivot variables, say = and y, but two free variables, say
z and w. From this matrix, we have that ¢ — z +w =0 and y + 2z + 4w = 0,
which then implies

r=z—-w

y = —2z —4w.

which yields the solution vector of

x s+ 3t 1 3
Y —2s—4t| |2 —4
z| s ] +e 0
w t 0 1

43 Made with © in ETEX.



Linear Algebra Notes DeVon Herr (Summer 2019)

The basis of the nullspace of A is given by those two vectors, so the nullity of A
is 2. Since for every free variable we get another linearly independent vector in
the basis, we have that the nullity of the matrix is equal to the number of free
variables.

This completes the “proof.”

As an aside, now that we know that the nullity of A is 2 and that there are
4 columns (we don’t count the right hand side), we have that the rank of A is
4 — 2 = 2. We can verify this by noting that the row reduced echelon form has
only two non-zero rows, so that the rank is 2.

11.2 “Backwards” Linear Algebra

If we have a matrix, we can derive a lot of properties about its corresponding
linear system. A question, is then, if we know said properties (rank, nullity, etc),
what can we actually say about the linear system?

“Theorem 1.10:” The Translation Theorem

Let A be an m x n matrix and let T" be any particular solution to AX = b.
Then the general solution is

X=T+W

where W € nullspace(A).

J

Here, W is a vector in the nullspace of A. If T is a solution, then T+ W is a
solution as well.

This is easy enough to check. If T is a solution, then we know AT = b.
But what about A(T 4+ W)? By the distributive law, we have AT + AW. Since
AW =0 and b+ 0 = 0, we have that A(T + W) =b.

So how can we use this? Suppose we have the following linear system

1 1 1 1
A=10 1 2 4
1 1 1 1
which tells us that
x -3 1
z 0 1
—— ——
A constant vector. A vector in the nullspace

Note that the vector T is a solution, and that AW = 0. Since we have an
arbitrary scalar s, we have that the nullspace is given by the span of the vector
W. The sum of these two vectors is precisely the form of the translation theorem.

So when is a solution unique? Recall, that any solution is given by the form
X =T+ W. Soif W is a non-zero vector, we can arbitrary translate/shift a
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given solution 7' to yield infinitely many solutions. But if the nullspace contains
solely the zero vector, or W = 6, T+ W =T, so there is only a single solution.
As an aside, a vector space having solely the zero vector is equivalent to the
dimension being zero. From this, if the nullity of A is zero, then T' cannot be
shifted, so there is only a single, unique solution.

Let A € M(m,n) where A is the coefficient matrix. There is at most one
solution to AX = b for all b € R™ if and only if the rank of A is n.

Here, n is the number of columns.
If the rank of the matrix is n, then the nullity of the matrix is 0. Then there
must exist only a single unique solution to the matrix.
Why at most 17 As an example, we have that the augmented matrix is given
by
1 0 2
01 1
0 0 2
which yields the inconsistent 0 = 2, so there is no solution. But the rank of the
coefficient matrix

1 0
0 1
0 0

is 1.

This theorem tells us that if a solution exists, we can determine whether or
not it’s unique. However, this theorem doesn’t comment on if a solution exists.
To this, we have another tool:

“Theorem 2.16”

The linear system AX = b is solvable for all b € R™ if and only if the
rank of A is equal to m.

Here, m is the number of rows.

Let’s begin with AX. We know that this is equal to 1 A1 +x2As+. ..+ 2, Ay,
where each of A; is a column vector, or A; € R™. Thus, AX is a linear
combination of the column vectors A;. We then have that b is equal to that
linera combination, so b must thus be in the span of the A;s span{A;, 4s,..., A}
if we want the solution to exist. So if b is not in the span, the solution does not
exist.

So what is span{A;, As,..., A,}? This is the column space of the matrix.
We want this to work for all b, so we need the column space to be R™ so that our
column vectors to be spanning. We don’t care if they’re linearly dependent—so
long as they span R™, it’s ok. So thus we require that the rank of A be equal to
m.
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11.3 Bounding Rank by Size
If A e M(3,5), the rank of A is either 0, 1, 2 or 3. The rank of A is defined as

the number of non-zero rows, and we only have three rows. But we can also
have all rows be zero, in which case we have zero non-zero rows. Thus,

0 <rank(A) <3

What about if A € M(5,3)? Again, the rank is either 0, 1, 2 or 3. Here, we
appeal to the fact that the rank is the number of pivot entries, and we can only
have one per column. Since we have three, we can either have no pivot variables
to all three columns having a pivot varaible.

From this exercise, we have that

0 < rank(A) < min(m,n).

[ Let A € M(10,9). Is it possible that AX = b is solvable for all b € R0? ]

No. The rank is less than or equal to 9, which fails the condition of needing
to be 10 to have a solution for all b € R'°. So when m > n, or where the number
of equations is greater than the number of variables, it is not guaranteed to have
a solution.

If m < n, we have that if the solution exists, it is non-unique. The rank is at
best m, which is not n, so the nullity is at least 1, so we have infinitely many
solutions.

11.4 Summary

“Definition 2.8”

An m x n matrix A is said to be nonsingular if the solution to AX =b
both exists and is unique for all b € R™.

It’s worth noting that it says all b € R™, because there can exist some b that
work, but not all.

If we want the existence for all b € R™, we need the rank of A to be equal to
the number of rows, m. And to guarantee uniqueness, we need the rank of A to
be equal to the number of columns, n. Putting these two together,

“Theorem 2.19”

A is nonsingular if and only if the rank of the matrix rank(A) is equal to
the number of rows m and the number of columns n.
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12 Day 12: June 25

We discussed two things last class:

“Theorem 2.16”

The linear system AX = b is solvable for all b € R™ if and only if the
rank of A is equal to m.

The linear system AX = b, if a solution X exists, is unique if and only if
the rank of A is equal to n.

“Theorem 2.19”

A is nonsingular (a unique solution always exists) if and only if the rank
of the matrix rank(A) is equal to the number of rows m and the number
of columns n.

“Theorem 2.20”

Let A € M(n,n) (so A is a square matrix). Then the following statements
are equivalent to each other:

e The nullspace of A is just the zero vector/just the origin/is {0}

e For each b € R”, the system AX = b has at most one solution.
(This comes from theorem 2.18)

e The system AX = b has a solution for all b € R™. (This comes
from theorem 2.16)

e A is non-singular.

If A is non-singular, we know that the rank of A is equal to n, the number
of rows and the number of columns. The other statements follow naturally. The
first statement is also a consequence of the rank-nullity theorem.

12.1 Review of Chapters 1-2
e Solving a linear system.

— Coefficient and augmented matrices.
— Gaussian elimination. We aim to transform A = EF(A) = Solution!?.

x If at any point, we have that a row of zeros equals a nonzero, we
have an inconsistency.

* A unique solution exists if we have the identity matrix as our
coeflicient matrix.

47 Made with © in ETEX.



Linear Algebra Notes DeVon Herr (Summer 2019)

12.2
1.1
1.2

1.3

14

1.5

1.6

1.7

+ Infinitely many solutions exist if we have the coefficient matrix
as a row-reduced echelon form. We can then find the general
solution by solving for the pivot variables in terms of the free
variables.

Test for independence. This is achieved by solving the homogenous system
AX =0or 2141+ ... 2,4, =0.

Theoretical stuff
— Vector spaces — a set of vectors closed under addition and scalar

multiplication.

— Bases are a finite set of vectors which generates the (often) infinitely
many vectors in a vector space. They must be linearly independent,
spanning (their span is the vector space) and their dimension is the
number of elements. Only two of these are necessary to prove that a
set is a basis.

— Examples of vector spaces are M (m,n) and R™.

— Examples of subspaces are nullspaces, column spaces, and row space,
which can all be derived from the matrix.

— Rank theorem (rank of the column space equals the rank of the row
space). The spaces are different, but they have the same dimension.

— Rank-nullity theorem. rank(A) + null(A) = n where n is the number
of columns.

— Rank tells us information about the number of solutions. If the matrix
is “full rank”, there exists only one solution for all constant vectors.
Every T/F Question
True.

False. Not true in general, we can get either a linearly independent or a
linearly dependent subset.

False. Not true in general, a set can contain a set of linearly independent
vectors, but still have a vector which is a linear combination of those
linearly independent vectors.

True.

False. Not true in general, only one vector has to be a linear combination
of the others, but not all of the others.

True. This is true by definition, but also because any linear combination
of the zero vector (with all other vectors zero) is the zero vector.

False. We have a vector which is linearly dependent on the others, so the
set is linearly dependent.
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1.8

1.13
1.14

1.15

1.16
1.17
1.18
1.19

1.20

1.21

1.22
1.23
1.24

1.25
1.26

1.27

1.28

False. It is possible that X is linearly independent from the rest, and that
some other vector is linearly dependent.

False. A plane is two dimensional, so it’s ok.
True. We can have 0, 1 or infinitely many, but no other possibilities.

False. By the rank-nullity theorem and the translation theorem, our
solution space is two dimensional and is thus a plane.

False. Two parallel planes is the fastest counterexample.
False. Infinitely many solutions is still an option.
True. We can’t have more non-zero rows than there are rows.

a True. If the first system has a unique solution, the coefficient matrix
must be row equivalent to an identity matrix. Since the second system
has the same coefficient matrix, we can end up in the same situation
and get a single solution.

b False. Adding one to an entry of the constant vector shifts the plane,
which can cause the planes to no longer intersect.

¢ False. The exact same process from above applies, albeit in the
opposite direction.

False. Not true in general, we can get an identity matrix with a constant
column, but we can also get an inconsistent row as well. It has at most
one solution.

False. If there are infinitely many solutions, the nullity must be at least
one. But if there are three non-zero rows, the rank is 3. This contradicts
the rank-nullity theorem.

“do it urself lol”
True. Add the third row to the fourth.

True. We get the identity matrix, which is consistent as a coefficient
matrix.

True. The rank-nullity theorem is at least one.

False. The rank can be 3, which would imply the nullity is 0, which means
the nullspace is solely the zero vector.

True. Rewriting this as two equations then applying subtraction implies
the vector belongs to the nullspace.

True. Decomposition into iterated vector addition and scalar multiplication
implies that it is part of the nullspace.
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1.29

1.30

1.31

1.32

1.33

1.34
1.35
1.36

2.1
2.2

2.3

2.4

2.10

2.11

True. With some algebra and simplifications, this is actually the span of
only one vector, so it’s the solution of a homogenous system.

False. By the same logic as 1.29, the vector is a solution to a homogeonus
system.

False. If we set up an augmented matrix and apply row reduction and then
check for the conditions where we have a consistent system, our solutions
lie on the span of a single vector, which is a line.

True. If we explicitly write out the span as the set of all possible linear
combinations, the first span has three degrees of freedom, but the second
only has two.

False. You can’t get a zero element. Also, using any two vectors makes
it very clear it’s not closed under addition. This also isn’t closed under
scalar multiplication.

True.
False. This fails to be closed under scalar multiplication.

False. The subspace containing just the zero vector is indeed a subspace.
Note, however, if we have any non-zero vector, we have infinitely many
elements by scalar multiplication.

False. Rank can be at best 5, so only 5 linearly independent columns.

a False. We only have two pivot entries, so we only have two pivot
columns, which form a basis of the column space, so the other columns
necessarily are linear combinations of those two pivot columns.

b True. It’s not a pivot column, so it must exist as a linear combination.
¢ True.

d True. Inspsection is sufficient.

e False. Inspection is sufficient.

True. An n X n matrix row reduces to a identity matrix if their rows are
linearly independent. So both will be the identity matrix.

True. If there are infinitely many solutions, the nullity of the matrix must
be non-zero, so the rank of the matrix is not the number of rows or columns.
Thus we have fewer linearly independent columns than we have columns,
so we have at least one linearly dependent column.

False. By inspection, they are linearly dependent, and has dimension two,
which is insufficient to span R3.

True. Although they are not a basis (since we have more vectors than we
have dimension), they do indeed span R? since we can find two linearly
independent vectors.
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2.12

2.13
2.14

2.15
2.16

2.17

2.18
2.19

2.20

2.21

2.22
2.23
2.25
2.26

2.27

13

False. We can get a plane that isn’t one of the axial planes, and it can’t
be spanned by the axes. In another sense, we only have three total planes
possible. Importantly, these three vectors do indeed span three dimensional
space, but we cannot pick two and get any plane in three dimensional
space.

False. We have four three dimensional vectors.

True. If the nullity is four, then the rank of the matrix must be zero, so it
would be a zero matrix. This is a contradiction.

False. These four vectors must be linearly independent.

False. We don’t know for sure if the set of four vectors has dimension 4 or
not. It’s possible that we removed a linearly independent vector.

True. If five vectors span a four dimensional space one is linearly dependent,
then we just need to pick four linearly independent vectors to get a basis.

True.

False. We only have four vectors to span a four dimensional space, so
they’re all necessary.

a True. We have that the nullity is three, so the rank of the matrix is 2
by the rank nullity theorem.

b False. This is only possible if the rank is equal to three, but it’s not.

¢ False. This is only possible if the rank is equal to five, but it’s not.

True. If there always exists a solution, the rank of the matrix is m. The
transpose of the matrix is n X m. Thus we have uniqueness for a solution
if it exists.

True. The same reasoning from 2.21 applies here.
False. The same reasoning from 2.21 applies here.
True.

True. If the column space is a line, the rank is 1, so the dimension of the
row space is also 1, so there is only one linearly independent row.

True. The rank-nullity theorem puts a restriction on the number of columns
but not the number of rows.

Day 14: June 27

We begin chapter 3, the study of
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13.1 On Linear Transformations

We’ve discussed what it means to be linear before, but we will discuss it again
too. We can consider a transformation as a special kind of function.

We'’ve worked with cartesian coordinates, but we’ve also worked with polar
coordinates. With the formulas r = /22 + 42 and § = tan~!y/x, we can
actually transform from cartesian to polar. However, this transformation isn’t
linear. We again will discuss what that means later, but we will first start with
calculations.

13.2 Matrix Multiplication

In chapters 1-2, we’ve looked at multiplying a matrix A with a vector X to get
AX. Can we then multiply two matrices? Can we compute AB if A and B are
both matrices?

We can consider the second matrix, B, as a set of column vectors [By, ..., By],
so AB=A-[By,...B,]. Since we know how to multiply matrices with column
vectors, we can do a sort of distributive property and get

A-B=[ABi,...AB,)].

ABs is only defined if B € R"™, otherwise matrix multiplcation here will
not be defined. This follows for all the other column vectors. For posterity,
AB; € R™,

Since each AB; is m x 1 and we have p of them, our matrix is of size m x p.
If A € M(m,n), matrix multiplication AB is well defined if and only if
B € M(n,p). It is defined as

AB = [AB,,...AB,].

Compute

This is indeed well defined, as A is 2 x 3, and B is 3 x 2.
Computing, we have that the product is

el

The product is 2 x 2 since we have 2 columns in B and 2 rows in A

o1 7b A

Compute
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This is not well defined, as we have 3 columns in A but 2 rows in B.

2 1|1 2 -1
0 3|10 1 1]°
This is indeed well defined, as we have two columns in A and 2 rows in B.
Computing, we have that
2 5 -1
0 3 3]|°

Compute

Commutativity of Matrix Multiplication

In general, matrix multiplication is not commutative. For two matrices
A and B,
AB # BA.

1 2|[|-1 1

0 -3||2 =5

-1 1][1 2

2 —=5] |0 =3|°
These are both well defined since both matrices are 2 x 2. Computing, we

have that
3 -9 1 -5
-6 15 2 19

Note that the identity matrix multiplied by an arbitrary square matrix is
just the square matrix. We actually have commutativity here.

Compute

and

J

13.3 Some Properties of Matrix Multiplication

We can rewrite A as a set of row vectors, and we have

Ay
Aa

AB=| .

Ap

Since A is m X n, we have that each row vector is 1 X n. B is n X p, so the

product of each row with B is 1 x p. Since we have m total rows, each being p
long, we have that the matrix is m x p.
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Either perspective is correct in computing the matrix product.

Proposition 3.2

In general, for the product of two matrices A and B,

In addition,
e Matrix multiplication is not commutative.

e Matrix multiplication is associative. ABC' = A(BC) = (AB)C. There’s a
proof, but I won’t bother with it.

e Matrix multiplcation is distributive over matrix addition. That is, A(B +
C)=AB+ACIf Ae M(m,n) and B,C € M(n,p).

e Matrix addition is distributive over matrix multiplication. That is, (B +
C)A=BA+CAif Ae M(n,p) and B,C € M(m,n).

o AB' = B'. Al

e cAB = A(cB). In general, we can introduce a scalar at any point in the
equation and it will keep its value.

What happens to the ranks if we multiply two matrices?

“Theorem 3.3:” Rank of Products

rank(AB) < min(rank(A), rank(B)).

If A and B are non-singular, then AB is also non-singular with rank n. ]

13.4 Inverse Matrices

When we studied the real numbers, we had four binary operators, addition,
subtraction, multiplication and division. Note that these come in pairs as
subtraction is the inverse of addition and likewise.

So we have defined addition, subtraction and multiplication for matrices.
Can we define an inverse to multiplication? Given a matrix A, what is the
matrix equivalent to 1/A? Once we have a reciprocal, we can define an inverse
to multiplcation.

Taking 1/A, what is “1” in a set of matrices? It has two properties:

e It is a multiplicative identity: 1-a =a - 1.

-a=1.

=

Do we have one of these? Yes. This is the identity matrix.
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14 Day 15: June 28

Test!

15 Day 16: July 1

15.1 Review on Matrix Multiplication and the Identity
Matrix

Recall we discussed matrix multiplication prior. The first matrix A must be
A€ M(m,n) and B € M(n,p) for AB to be well defined. We also discussed a
very important matrix, the identity matrix I, which is also a square matrix. It
has the very important proeprty where A- I = A and I - A = A.

Take care, however. For example, if A € M(2,3), then A - I is only well
defined if and only if I is a 3 x 3 identity matrix. But if we wanted to compute
I- A, then I must be 2 x 2 for the product to be well defined. They both yield
the same product, though.

15.2 On Inverse Matrices

We discussed this as a means to include “division” for matrices. For the real
numbers, we have the multiplcative inverse 1/a, which is only well-defined if and
only if a is not zero.

Now, for matrices, we are looking for I/A where A is some matrix. We should
also expect A-I/A = A. This motivates the following definition:

“Definition 3.8:” Inverse matrices

An n x n matrix A is invertible if there is a matrix B such that AB =

I = BA where I is the identity matrix. We can then write B = A~! and
refer to B as the inverse of A or “A-inverse”.

As a result, we should expect both AA~! and A~'A to yield the identity
matrix.

So what kinds of matrices are invertible? And why do require A to be n x n?
Why does it have to be square? Well, the identity matrix is a square matrix,
so if A is not a square matrix, we run into issues. If A is 5 x 4 and we wish to
multiply it by a matrix to yield an identity matrix, we get that B is a 4 x 5
matrix for a 5 X 5 identity matrix.. But then BA yields a 4 x 4 identity matrix.
A perhaps more important reason is

rank(AB) < min(rank(A), rank(B)).
where in this context, AB is the identity matrix, which gives us

rank(l) = n < min(n,n).
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This only holds if all of their ranks are n, so A and B are non-singular. This
motivates the following theorem:

“Theorem 3.9:” Nonsingular Matrices are Invertible

Let A be an n X n matrix. A is invertible if and only if A is nonsingular.

A is inveritble if and only if A has rank n.

The process for inspecting if a given matrix is invertible is thus as follows
(this is in lieu of using examples):

e Check if the matrix is n X n

e Check if the rank is n.

“Theorem 3.10:” Inverse Matrices are Unique

Let A be an n x n matrix. If either of the following statements hold, then
A is invertible and B = A~

e There is a matrix B such that BA = I (there exists a left inverse).

e There is a matrix B such that AB = I (there exists a right inverse).

There only exists a single unique inverse matrix—the left and right inverse
are both the inverse.

We make this seemingly pedantic point simply because AB # BA. This is
useful because we only have to show one side and the other is implied.

15.3 Finding Inverse Matrices

The simplest case if we are trying to find the inverse of an identity matrix. The
inverse of it is itself.
What about a diagonal matrix such as

-3 0f,
0o
We are looking for a matrix such that
a bl [-3 0] |1 0
c d |0 2 (0 1|°

Multiplying through, we have that
—3a 2b| |1 O
-3¢ 2d| [0 1|°
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which tells us that a = —1/3 and d = 1/2, so our inverse matrix is

_ -1 0
0 3

We can generalize this:

The inverse of a diagonal matrix is the matrix with all of its diagonal
entries reciprocated.

Find the inverse matrix of

Following the same procedure, we end up with

a+3b=1
2a+2b=0
c+3d=0
2c+2d =1.

which we can solve. Things get out of control easily, though. For a given n x n
matrix, we have to juggle n? variable. So we wish to find a more efficient method.

15.4 A Better Method for Inverting Matrices
15.4.1 Row Swaps as Matrix Multiplication

First we need to talk about Gaussian Elimination. Note that if A is nonsingular,
it gives us I. Is this process somehow related to matrix multiplication? Yes.

We can interchange two rows. This is equivalent to multiplying our matrix
with a matrix on its left. Consider the operation

Ay A
AQ = Al
Az Az

but we can also accomplish this by multiplying PA. What is P? It would be

o = O
o O
= o O

Where did this come from? Well we have to start with a 3 x 3 matrix. Since we
switched the first and second rows, we can just switch the first and second rows
of the identoity matrix.
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Let A be n x n. We can find a matrix P such that PA corresponds to
switching the x and yth rows of A by taking the n x n identity matrix
and switching the z and yth rows of it.

Note that P corresponds to switching the z and yth row. If we do it twice,
we go back to the original matrix. Thus PPA = A. Note that by identity matrix
properties, PP =TI if PPA= A, so P~' = P.

What about if P corresponds to a matrix that can only be yielded by a
sequence of exchange of rows? Let P; be the first exchange, then P, the second.
Then our desired matrix is given by P, P; A. The product of multiple matrices
for elementary row opeartions stacks leftward.

15.4.2 Stripping Rows as Matrix Multiplication

If we want to add cA; to the row A;. Then P is given by where the constant ¢
is in the i-th row and j-th column.
So if we wanted to find P such that corresponds to

Ay Ay
A2 = A2 + 2A1
As As
This would be given by
1 0 0
2 1 0
0 0 1

15.4.3 Scaling Rows as Matrix Multiplication

This one’s straightroward. If we want to scale the ith row by ¢, we simply take
the identity matrix, and replace the ith diagonal entry by c.

15.5 Gaussian Elimination, Again

Gaussian elimination can then be represented as a sequence of left matrix
multiplications.

16 Day 17: July 2

We will continue our discussion on inverse matrices.

Nonsingular Matrices are Invertible

If A is nonsingular, then A is invertible and A~! exists.

Again, we know that A=*A = I, where I € M(n,n). Last time, we introduced
the idea of writing elementary operations as a left multiplcation of a matrix P.
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Swapping two rows corresponds to switching said rows of the identity
matrix. Adding a row by a constant of another row is accomplished by
adding a constant in the column of the row we are adding and in the row
we are adding to.

Let
1 0 3
A=12 -1 1
-2 1 5

write the elementary row operations to reduce it as a sequence of left-
matrix multiplication.

\. J

We first begin by subtracting two times the first row from the second row to
give us

1 0 3
0 -1 -5
-2 1 5
which corresponds to
1 00
P=|-2 10
0 0 1

Continuing, we look to add two times the first row to the third row, which
yields

1 0 3
0 -1 -5
0o 1 11
which can also be expressed as
1 00 1 0 3 1 0 3
0 1 0 0 -1 -5 =10 -1 -5
2 0 1] (-2 1 5 0o 1 11

Then we want to add negative one times the second row to the third row,
which we can then represent as

1 0 0|1 0 3 1 0 3
0 1 0|0 -1 =5 =0 -1 =5
0 -1 1[0 1 11 0 0 6

Then to make the last entry in the third row 1, we divide by 6 which is
accomplished like so:

100t o 3 1 0 3
01 0[]0 -1 =5/=1]0 -1 =5
00 ¢][0 0 6 0 0 1
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Then we want to add five times the third row to the second

(1 0 0 0 37 (1 0 3]
01 5 -1 =5/ =10 -1 0
0 0 1 0 1] 0 0 1}
Then we want to subtract three times the third row to the fisrt
(1 0 =311 0 3] [1 0 0]
01 0 0 -1 0l=1|0 -1 0
0 0 1 0 0 1 0 0 1

Then to complete, we change the sign of the second row.

1 0 0|1 0 O 1 00
0 -1 0|0 -1 Of=1|0 1 0
0 0 110 0 1 0 01

I haven’t labeled them, but we’ve done a total of 7 matrix multiplications to
reduce our original matrix. Importantly, note that as we multiply our matrices,
they come from previous steps. So our first product is given by P; A, so the
second one is given by P, multiplied by the previous product, which is thus
P, P A. Generalizing to the very end, where we got the identity matrix, we get
the horrendously long equivalent of Gaussian elimination:

P;PsPsP P3Py P A = 1.

Because matrix multiplication is associative, we can multiply all the Ps
together, call it B I guess, and we get BA = I, which is precisely the definition
of an inverse: B = A~! so

A7l = P,PsPsP P3P Py

This still sucks, since computing seven products is awful.

16.1 Adjoining the Identity Matrix to Invert

Instead of repeatedly reducing A to I by doing PA, we can create a new matrix
by connecting A next to I, which yields a n x 2n matrix. We can represent this
new matrix as

[A I].
Applying the first elementary row operation then gives us
P[A I)=[PA P
Generalizing, we end up with

P; [PsPsPAPsPyPL A PsPsPyPsPoP] = [1 A7,
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The idea is to do apply elementary row operations to the left hand side and
apply Gauassian elimination. We still have to apply the operations to the entire
matrix, importantly. THe right half will, step by step, transform into the identity
matrix.

This was an extremely long demonstration of this:

To compute the inverse matrix of A, adjoin the identity matrix I to the
right of A to get a n x 2n matrix, and apply elementary row operations
as if you were trying to reduce the left half. When done, the right half
will be the inverse matrix.

I’'m not going to typeset examples here, sorry.

16.2 Applications of Inverse Matrices

We can actually work with “division” now, where A/B = AB~!. For this to
be well defined, B must be non-singular. This is supposedly equivalent to the
condition that we can’t divide by 0.

More importantly, however, if we have AX = b where there exists a solution
X for all b, we can solve for X by computing

ATTAX = A"
which simplifes to
IX=A"%
and then
X =A"1p.

However this isn’t actually that useful. We first have to find A~! and then
apply it to b, which is two steps instead of just applying elementary row reduction
to AX = b. On the contrary, this is useful when solving a series of system of
linear equations, which apparently exist. So if we are to solve

AX;=b
AXy = by
AXk = b

this can be done by multiplying all sides by A~!. Then we only have to do
elementary row opeartions once, and just carry out k£ matrix multiplications
rather than doing elementary row opeartions k times.

16.3 Properties of the Inverse

We know that (AB)! = B'A!. There is a similar idea for (AB)~!, where the
inverse is B~'A~!. We can think of it as first undoing the multiplication by B
then undoing the multiplication by A.
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16.4 LU Decmoposition Sneak Peek

In the “real world”, we don’t actually solve matrices by hand. We usually just
let a computer do it. However, even though computers are faster than humans
in computing, there’s still a barrier where it becomes infeasible. In general, the
big-Oh of Gaussian elimination is O(n?), but there exists a technique to bring it
down to O(n?)

17 Day 18: July 3

17.1 Compuational Costs for Gaussian Elimination

Gaussian elimination is O (n3) The logic is because Gaussian elimination works
as follows:

e We apply elementary row opeartions for each pivot entry. For a given
n X n matrix the worst case is n pivot entries.

e For each row below the pivot entry, we have to subtract away a mul-
tiple of the previous row. This is thus done n(n — 1)/2 times. This
addition/subtraction process grows with respect to row size so it’s O(n).

e Backsubstitution exists, which takes n(n — 1)/2 operations.

With some extremely shitty multiplication, we can then conclude that Gaus-
sian elimination is O (n?’)

However, this is is the worst case. We have some better options for matrices,
too.

e The computational cost of applying Gaussian elimination to an identity
matrix is 0. It takes n checks but we don’t need to actually calculate
anything.

e For a diagonal matrix, the cost is n. We just do n divisions.

What about for a lower triangular matrix? The advantage is that if we have
a lower matrix, the cost of slicing away rows is constant. The first row has one
entry, and the second entry has two. Subtracting the first entry away from all
the lower rows brings them down an entry, so the process of slicing away rows
doesn’t grow with size, just the number of slices we have to do. Thus this is
only O (n2) For what it’s worth, the logic here also applies to upper triangular
matrices.

17.2 LU Decomposition

If we can take a given system AX = b and factor A into a product of a lower [
and upper triangular matix u, we can then rewrite this system into

LU(X) =b.
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Denote the product of U and X to be Y I guess, and this then becomes
LY =b.

which we can then solve in O (n2) Since matrix multiplication is O (n2), this
entire process is O (n?), an order better than regular Gaussian elimination.
When we looked ofr the inverse, we proceeded by solving

(4 1]

to find A~'. But this isn’t what we’re looking for. Instead, we stop when the
left hand side is in echelon form, then the right hand side will then be in upper
triangular form. The idea is that once we stop, we take the right hand side,
which is now in upper triangular form, and then apply the process of finding its
inverse.

LU Decomposition

Apply the same process of finding an inverse matrix for a matrix A, but
then stop when the left side matrix becomes echelon form. Denote the
left side matrix at this point U and the right side matrix as P. Find the
inverse matrix of P. Call the inverse of P L. Then we have that A = LU.

The idea is to turn A into an upper triangular matrix, U and find its associated
P, then take P, and apply row reduction to it to get P». Then we have that
A= PRU.

17.3 Applying LU Decomposition to Solve a System

Say we have that
1 0 0] [1 2 1
A=1]1 1 0] |0 1 3
2 3 1/ [0 0-3
1
and we are looking for where AX = [2].
3

Proceed by solving LY = b, which involves adjoining the constant vector to
our lower triangular matrix.

1 0 01 1
110 2[=X=|1
2 3 1 3 -2
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Then solve UX =Y, which we do by adjoining the constant vector from the
previous step to our upper triangular matrix. Once solved, we are finished.

1 2 1 1
01 3 1
00 -3 -2

17.4 Restrictions on LU Decomposition

Not all matrices can be decomposed as such.

Type-2 Matrices

We say that a given m X n matrix is type-2 if and only if A may be
brought into echelon form using a sequence of only type-2 elementary
row operations.

Here, a type-2 elementary row operation is adding multiples of rows to
other matrices.

This is of some importance because if we had to switch rows, we switch rows
of P which renders it no longer lower-triangular.

The inverse of an upper-triangular matrix is an upper triangular matrix
and vice-versa for a lower-triangular matrix.

“Theorem 3.12:”

Let A be an m x n type-2 matrix. Then there is an m x m lower triangular
unipotent matrix L and an m X n echeleon matrix U such that A = LU.

We define a unipotent matrix as a lower triangular matrices with it’s
rightmost entry in each row to be 1.

This directly implies that if a matrix is not type-2, we cannot apply LU
decomposition on it.
If A is nonsingular, then U is upper-triangular.

17.5 PLU Decomposition for non-type 2 Matrices

We will discuss this tomorrow for how to attack said matrices.

18 Day 19: July 4

Happy independence day! No class today.
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19 Day 20: July 5

I took notes for this on paper. I'll get to adding this later.

20 Day 21: July 8

20.1 Exam Review

I missed one question due to misreading a question and missed one question by
forgetting that the test for linear (in)dependence has that the solution

X1 0

Ty 0

doesn’t show dependence as it is a trivial solution.

20.2 Textbook Errata

The textbook claims that the nullspace of a m x n matrix A is a subspace of R™,
but is actually a subspace of R™. This makes sense since the number of columns
is the number of variables, so our vectors in the subspace have n entries. The
column space of A is a subspace of R™. This is because the number of entries
per given vector is based on the number of rows.

20.3 Matrix and Linear Transformations

Let T be a transformation
T:V W

where V and W are vector spaces. We say T is linear if it satisfies the
two conditions:

e Linearity of addition/additive property - T(X +Y) = T(X)+T(Y)

e Distributive of scalar multiplication/scalar property — T'(c- X) =
¢ - T(X).

J

We don’t have a specific expression (something like f(z) = z?) so far but
just a list of properties. So, for an example, are matrix transofrmation linear?
Going through the properties:

o T4 :R™ — R™ soit is indeed a map from and to vector spaces.
e TH(X+Y)=AX+Y)=AX + AY = TA(X) 4+ Ta(Y) through the

distributive law, so we do have the additive property.
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o Ty(cX)=A(cX) = c(AX) = cTs(x) since vector spaces are closed through
scalar multiplcation, so we have the scalar property.

This proves that all matrix transformations are linear transformatins. But what
about the other direction? Are all linear transformation matrix transformations?
The answer is no. We have some restrictions on domain and range for matrix
transformations (R” — R™), but we can have linear transformations for arbitrary
vector spaces. That being said, all linear transformations which match these
domain and range restrictios are indeed matrix transformations.

“Theorem 3.1:” The Matrix Representation Theorem

Let
T:R" - R™

be any linear transformation. Then there exists a unique matrix A such
that
T(X)=A-X

for any and all X € R™.

20.4 Finding Matrix Transformations

“Definiton 3.4:” The Identity Transformation

This transforms anything to itself.
Let V be a vector space. The identity transformation V is the transfor-
mation

Iy V>V
defined by Iy (X) = X for all X € V.

As a simple consequence, the domain and range are the same. I won’t prove
that it’s a linear transformation either. The matrix which corresponds to this
transformation is the n x n identity matrix, so we have that

Iy(X)=A-X =X.

Previously we discussed the concept of an image T'(.S). Consider the identity
transformation I : R? — R2. On the domain, we have the vectors [1 Q}t and
[2 1]t. So what is I(S)? the set of these vectors after the transformation? It’s
the same set.

What about if S is some vertical line segment? This corresponds to all
vectors stemming from the origin whose heads end on the line segment. I(.5)
will still be that segment.

Okay, not what about if S is the unit square? Okay you get this gist of it.
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21 Day 22: July 9

We previously discussed that for a given linear transformation, if the domain is R™
and the range is R™, then the linear transformation is a matrix transformation.
This is not true in general, however. We also discussed the identity transformation
Iy (X) where V denotes the vector space which is simultaneously the domain
and the range for the identity matrix. If V' is R™, then the matrix transformation
which corresponds to this is multiplication by the n x n identity matrix.

21.1 More Examples of Linear Transformations
The 3B1B Trick

Given n basis vectors x1,Zs,...,T,, the matrix A which corresponds to the
linear transformation

x1 — 7}

Ty —> T

Ty — T

is given by

For a more complete treatment, refer to this video.

The majority following subsubsections (except rotations) are admittedly not
very important if you internalize this.

21.1.1 Dialation

Suppose we have the unit circle in R?. Its center is the origin with radius 1.
Suppose we want to get an ellipse from it, where the major axis is the y-axis
from -2 to 2 and the minor axis is the z-axis from -1 to 1. This is accomplished
by stretching the unit circle on the y-axis, which we do by taking all points on
the unit circle and doubling its y-coordinate.

We have this procedure for other stretches and squashes. These linear
transformations are given by some diagonal matrix

_|1a 0
A= [0 } |
For instance, if we wanted to find the matrix which corresponds to stretching
the unit circle on the z-axis three times, we would look for a matrix A such that

b=0)
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We can do matrix multiplication and find it explicitly, but the 3B1B trick
tells us it should be
30
A= [O 1] |

We also have higher dimensional analogues. I won’t bother.

21.1.2 Reflections

Suppose we have a right triangle with vertices at the origin, (1,0) and (1,1). A
reflection would be if we flipped it onto the other side across the y-axis, now
giving us the origin, (—1,0) and (—1,1). Tt should be straightforward to see that
we can obtain this reflection by taking all points on the original triangle and
multiplying their z-coordinate by negative one. This will obviously be given by

-1 0
A[ 5 1].
21.1.3 Rotations

What if we want to rotate the unit square 45° using the origin as a pivot?

Instead of using [a: y}t as our vector, what if we use polar coordinates?
This should feel normals, as polar makes circular things easier. Thus an arbitrary
point on the unit square will have the coordinates

i)

If we want to find the matrix that rotates our vector by «, we are looking for a

matrix such that _
a b| |rcos(@)|  [rcos(d+ )
c d| |[rsin(9)|  |rsin(d+ )
I really don’t want to follow the proof since it’s not very enlightening and
uses more trigonometric identities than I'm comfortable with, so here’s a rough

outline instead:
_|cos(f) —sin(0)
o |:SiIl(6) cos(0) } '

Going off of the 3B1B trick, the first column should be fairly straightfoward:
the vector [1 O]t 0 “starts” at 0 radians, so rotating it by 6 should be given by
the 2 and y coordinates of the vector on the unit circle at angle 6, which naturally
come from cos(f) and sin(f). For the second column, which corresponds to the
transformed y basis vector, rotating by 6 naturally makes the = coordinate smaller
and starts at 0, so it must be given by —sin(f). Likewise, the y component
starts at 1 but decreases, which is cos(9).

Since we have identified a matrix, this is indeed a linear transformation.

21.1.4 Shears

This is the linear algebra equivalent to skewing an object in MS Paint.

68 Made with © in BTEX.



Linear Algebra Notes DeVon Herr (Summer 2019)

22 Day 23: July 10

We went over the following linear transformations:

e Identity transformation — Multiplication by the corresponding identity
matrix

e Dialation — Multiplication by a diagonal matrix with all entries greater
than zero.

e Reflection — Multiplication by a diagonal matrix with all entries either
positive or negative 1.

cos(f) sin(0)
sin(f) cos(6)
true in two dimensions though. In general, we have that a rotation matrix
A has the property A- AT = I. Any matrix which satifies this property is
known as an orthogonal matrix.

e Rotation — Multiplication by the matrix { } This is only

e Shear — Multiplication by a triangular matrix.

22.1 Observing Images

Suppose we have the unit square as a set of vectors S and we have the
matrix transformation

cos(90) —sin(90)

A0 = sin(90)  cos(90) |

What is T'(S)?

\. J

Since T4 (X) is a counter clockwise rotation by 90 degrees, the image T'(S)
is given by the unit square rotated into quadrant two.

What about if S is the unit circle?

Circles are infinitely rotationally invariant (very rotationally symmetric), so
this is the same thing.

If S is the unit square that touches 1 and -1 on every axis and

Ta(X) = [g g]

what is T'(S5)?

. J

This corresponds to the basis vector for x being stretched by a factor of 2
and the basis vector for y being streteched by 3. This gives us a rectangle that
is taller than it is wide.
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22.2 Composition of Matrix Transformations

We know how to get a circle to an ellipse, but what if we want to get a rotated
ellipse (such that the major/minor axes aren’t the coordinate axes)? The
principle is to identity a matrix which first stretches the circle into the ellipse
and then a matrix which rotates it.

Composition of Real Functions

Say we have f(z) =2z + 1 and g(z) = sin(z). Then f(g(x)) = 2sin(z) + 1 and
g(f(2)) = sin(2z + 1). Importantly, composition is generally not commutative.
Back to Matrices

If we have two matrix multiplications T4 and Tz, we can proceed by similarly
defining (T4 o T)(X) = Ta(Ts(X)). What if T4(X) = AX and Tp(X) = BX?
We then have that

(TaoTp)(X)=Ta (BX)= (A B)X.

This follows from the associative law.
This also implies that
(TA o TB) = AB

which indeed proves that composition of matrix transformations are themselves
matrix transformations and are thus also linear transformations.

“Definition 3.5:” Composition of Matrix Transformations

Let U, V and W be sets and define the following transformations 7'y and
Tg as follows:
Ty :U—V

Tg:V > W

Then the composoite of Tg with T4 is the transformation

Uu—Ww.

\. J

This implies that the domain of the composition is given by the first set U
and the range of the composition is the final set V.

Find the matrix transformation that strtches a circle to an ellipse with
its major axis as the y-axis with a factor of two then rotates it clockwise
45 degrees.

We attack this by using composition. We look for the entire matrix T as a
composition of two other matices Tg o T4. The first matrix transformation, 7’4
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is just a dialation by a factor of 2 on the y-axis, which is
10
A= [O 2] .
The second matrix transformation, Tz is a rotation by 45 degrees clockwise,

which is given by
_|cos(—45) —sin(45)
~ |sin(—45) cos(—45)|"

By definition, we have that T(X) = (B - A)X. I'm not going to bother
showing all of the steps here, but note that we can factor out the v/2/2 in the
first matrix. Carrying everything out we have that

V21 2
T =5 {—1 2} -

22.3 Orthogonal Matrices

An orthogonal matrix is defined as having the property A” - A = I. This also
implies that AT = A~'. This also means that

Tar 0Ty = T5.

We have that this is true for all rotation matrices since the transpose AT
corresponds to the rotation matrix rotated in the opposite direction. Their
composition, which corresponds to rotation a certain number of degrees then
rotating it back, is then obviously the identity transofrmation.

In 2 and 3 dimensions (so 2 x 2 and 3 x 3 matrices), all orthogonal matrices
necessarily correspond to a rotation matrix.

22.4 Inverting Matrix Transformations

“Definition 3.7:” Inverse Linear Transformations

Let
T:V W

be a linear transformation ebtween two vector spaces V and W. We say T’
is invertible if for all Y € W there is a unique solution X to the equation
T(X) = Y. In this case, the inverse transformation T-! : W — V is
dfined by T=}(Y)) = X if and only if T(X) =Y.

It should be fairly straightforward that (77! o T(X)) = I(X) = X.

“Proposition 3.4:” Inverse goes both ways

For a given linear transformation corresponding to a matrix transforma-
tion, the linear transformation is invertible if and only if the matrix is
invertible.
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22.4.1 Properties of Invertible Linear Transformations

o If A is linear, A~! is linear.

e If A is inveritble A~! is also invertible.

23

If Ty, Ty are linear transformations, then their composition Ty o Tz is also
linear.

Day 24: July 11

23.1 T/F Section 3.1

3.1

3.2

3.3
3.4
3.5

3.6

1 o .
If we know that A 9| = and likewise for the second equation, we can

7
3
expand and solve for entries. Then we check if it’s possible. Supposedly
this is false.

True. Geometrically, linear transformations can’t create more/new lines
nor can they stretch them.

False. Shears.
False. Projections.

False. This is a trick question, because the question did not specify linear
transformations. Also multiplication by the zero matrix collapses R? to
the origin.

True. Two linearly independent vectors can form a basis of R?, so we are
able to create any vector in R? from those two and use linear transformation
properties to compute them.

23.2 T/F Section 3.2

3.12
3.13
3.14

3.15

3.16

False. This is not true in general.
False. Just check sizes.
True.

True. Since matrix multiplication is writing down entries of dot products
with rows and columns, if one column of B is zero, then every row multiplied
by said column is zero, so we have an entire column in the product which
is zero.

True. The rationale from 3.15 applies.
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3.17

3.18

3.19
3.20

False. Counterexample is if A is a zero matrix and B is a filled matrix.
Note that if A is nonsingular, then B must be the zero matrix. This
is because if A is nonsingular (and thus has nullspace of solely the zero
element), then any product of A with B that yields zero implies that that
column of B belongs in the nullspace and is thus the zero element.

True. If the columns are linearly dependent, then we have some non-trivial
X such that BX = 0. So what about AB? Note that if BX = 0, then
ABX =0, as A0 = 0.

True. Apply the rank theorem with the logic of 3.18

False. We can have two dimensional collapses. The only thing we know is
that all columns of B are in the nullspace of A.

23.3 T/F Section 3.3

3.21

3.22

3.23

3.24

3.25

3.26
3.27
3.28

3.29

3.30

False. Just check if the rank is 4. It’s not, since the fourth row is the sum
of the first three.

False. The rank of A and B both cannot be larger than 3. So the rank
of the products also can’t be larger than 3. Since the resultant matrix is
4 x 4 and the rank is 3, it is not invertible.

False. If A is inveritble or nonsingular, then the rank of AB is equal to
the rank of B.

False.

True. If AB is invertible, it is full rank. Since A and B are both square,
they are also full rank and thus inveritble.

True. Invertible matrices are commutative.
True. We factor to get A(A+ 7I) = I, which implies that (A + 7I) = A~

True. If something is invertible, it is row equivalent to the identity matrix.
Follow this train to B.

True. Any element in the nullspace of B is in the nullspace of AB, since
BX =0 and A0 = 0. A doesn’t contribute since it’s invertible. In general,
if A is nonsingular, AB has the same spaces of B.

False. Multiply A on both sides, apply the associative law, and you get
AB = BA, which isn’t true in general.
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24 Day 25: July 12
24.1 Coordinates

We’ve seen coordinates before:
e Cartesian
e Polar

Generally when working in R™ we use the first. The cartesian coordinate
system has what’s known as a “standard basis:”

17 [o] [o
(lol,{1], o]}
ol lo] |1

However, this isn’t the only option. So long as we have three linearly independent
elements from R3, we can get a basis.
Supposer we have an arbitrary vector

a
b
which we can represent as
a 1 0 0
bl =a |0 +b |1 +c |0
c 0 0 1

Here, we have that a is the x-coordinate and so on.
So we can say in the standard basis, its coordinate vector in the standard
basis X' is given by
a
X' =

(=l

C

which is the same thing. But what if we don’t have the standard basis? What if
our basis is something like

1 1 1
B = O, (1], 1] p?
0 0 1
a
Then for a vector z = |b| we may have something like
a—b—c
X' =] b—c
c
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and X' # X.

“Definition 3.10:” Ordered basis

This is just some basis where there’s an ordering, like
B={zy,...,z,}

where there is an ordering (so swapping elements here produces a new
ordered basis).

Given that
X:a1X1+...+aan

where a; are scalars, we further define

ay
X' =

an

and say that X’ is the B coordinate vector of X.

17 [1] [1
B = of,|1], (1
0| |0] 1
and o
3
X =12
—1-
find X'.
By inspection, -
1
X' =1
_1_
1T [1] 1
B = Of, (1], (1
0| |0] 1
and o
3
X= |4
_1_
find X”.
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By inspection,

and

find X'.

By inspection

This demonstrates that changing the order of the elements in the basis can
change the coordinate vector.

General Method

When given some vector X and some n-th dimensional basis B =
{Bji,...B,}, we can find the X’ coordinate in B by solving

a131 —i—aan =X
which becomes the matrix
[31 ... B, X] .

which is solvable by whatever.

We call the matrix of all the basis vectors
Ps=[B ... B,

the point matrix.

We call it the point matrix since it point matrix multiplied by original vector
yields the point vector.
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Point Matrices are Invertible

This is because point matrices stem from bases, which are a set of linearly

independent vectors which span, which implies full-rank and so they are
invertible.

Starting with
Pgp-X' =X
and multiplying both sides by Pg L we get
-1
X' =P; X.
we can also denote Pg ! as the bluecoordinate matrix Cg, as multiplying the
original vector by this matrix yields the coordinate vector Cg - X = X'.
Why study coordinates? Because sometimes we might have a general vector

which doesn’t exist in R™, but we can find its coordinate in R™, which is a lot
easier to study.

24.2 Isomorphisms

“Definition 3.12:” Isomorphisms are Invertible Linear Transofmrations

Let V and W be vector spaces. Then an isomorphism of V' onto W is an
inveritble linear transformation

L:V =W

In this case, we say V is isomorphic with W.

Some examples:

e Trivially, V is isomorphic with itself. Here, the linear transformation is
the identity transformation.

e X — X'isan isomorphism. The linear transformation is just transposition.

e Let Py(R) be the set of all single variable polynomials whose degree is
less than or equal to N. Py is isomorphic to RN*! since we need N + 1
total variables to describe all the coefficients. In this case, we have that
(for example where N is 3) L : P3(R) — R* so

L(az® 4+ ba® + cx + d) =

QL O T

since for each cubic we can find a unique vector and vice versa, it is an
isomorphism.
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Then, to show that it’s linear, we just need to see if
L(P(z) + Q(X) = L(P(X)) + L(Q(X))

and
L(e-P(X)) =e- L(P(X)).

We can do all the epxansion, but I don’t really want to.

25 Day 26: July 13

We discussed what an isomorphism is:

We say there exists an isomorphism between two vector spaces V' and W
if there exists an invertible linear transformation

L:V —>W.

\. J

We also discussed an isomorphism between the space of all polynomials with
maximal degree N Py (R) to RN*! by the transformation

an
L{apz™ +...4ag) =

ao

Also worth mentioning that this is not a matrix transformation, since we can’t
really multiply a polynomial by a matrix here. We then showed that this an
isomorphism as

e [t is closed with respect to addition and scalar multipliation

e It is one-to-one and is thus invertible.

25.1 Applications of Isomorphisms

“Proposition 3.9”

Suppose that that W is isomorphic with an n-dimensional vector space
V. Then
dim(W) = n.

So dim(Py(R)) = N + 1.

This proposition doesn’t give us any information about V', though. We know
a lot of information about V' = R", but what if this isn’t the vector space we
work with?
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“Definition 3.11:” Point and coordinate transformations

Let
B= {xl,"',zn}

be an ordered basis for a vector space W. The point transformation with
respect to B is the transformation

T :R" - W
defined by
i ; =21X1+ ... 2 Xn.

Ln

The coordinate transformation is the mapping
=i
TS = (T§) W —R"

that transformats the element X € W into its coordinate vector X’ € R™
with respect to B5.

This tells us that for any and all vector spaces W, we have the coordinate
transformation to R™ and the point transformation backwards.

[ any n-dimensional vector space W is isomorphic to R™. ]

Suppose we want to transform some vector space V to W through some
transformation L. This can be hard, espicially if they are different dimensions.

v L w

C
TBVJ TT,’;W

R" —— R™
We proceed by doing the following:

e Convert the vector space V to R™ through a coordinate transformation
TS |
\4

e Convert R™ to R™ through a matrix transformation M.
e Convert the vector space R™ to W through a point transformation Tll;w'

If we let the first element X be in V' and the second element Y be its
corresponding element in W we have this very gruesome expression

This is further encapsulated in
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“Theorem 3.14:”

Let V and W be finite dimensional vector spaces where dim(V) = n
and dim(W) =m. Let L : V — W be a linear transformation. Let By
and By be ordered bases for V' ad W respectively. THen there exists a
unique m X n matrix M such that

LX) =M-X'

Y =M-X'.

This means we can reprsent the transformation L as a single matrix multipli-
cation by a special matrix M.

“Theorem 3.14”

Let A € M(m,n) and let B and B be ordered bases for R" and R™
respectively. Then the matrix of

TA :R" —» R™
with respect to the bases B and B is

M =Cg- APg.

which proves the matrix M in the diagram below

R — 45 Rm

always exists.

Suppose we have
1 0 2
B = O ; 1 B 7 3
0 0 —11
- 2
s-{13]- 3]}
with
2 11
a5 40
SO
Ts:R® - R2
Find M.
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Note that
M=Cgz-A-Pg,

so we need to find everything.

co_[2 1]7_1p <
B=1-3 4] “ 113 2]
Then we just multiply everything out.
Note that the matrix transforamation determined by A is the transformation
given in the standard bases, but M is the transformation given by the bases B

and B.
Linear transformations correspond to a changing of basis.

25.2 Preview of Determinants

We define the determinant to be a function on square matrices that assigns it a
real number, which tells us some neat things.

26 Day 27: July 16

We define the determinant as a function such that takes in an arbitrary square
matrix and yields a real number:

D:M(n,n) — R.

26.1 Determinants

For a 1 x 1, it’s itself, since 1 x 1 matrices are already real numbers, so we don’t
have anything to do.

For a 2 x 2 matrix A = [z Z] , we define it as

a b
det(A) = . d’—ad—bc.
. 1 2 1 2
801fA—[3 ZJ,theng 4‘—4—6——2.
2 4
If A= 3 6}7thendet(A)=12—12:O.

What about the 3 x 3 determinant? We do it recursively.
The determinant for a 3 x 3 matrix is a little more involved and requires a
bit of recursion. This generalizes to arbitrary dimensions.
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The procedure is as follows. Take the first entry in the top row, and then
delete all entries on the same row and column of it. Multiply the first entry with
the determinant of the remaining entries not including the first entry. Then,
repeat this process with the second entry in the first row but negative. Flip
signs each time.

ar b o g o o o o o 0o oo

ag bg Co| = ay O bg Co| — b]_ as O co| + C1 (G2 bg [l

as bg C3 O b3 C3 as O C3 as bg O
_ by Co az C2 az by
—u b3 C3 B bl as Cs3 ta as b3 ’

There exists an alternative way:
e Adjoin a copy of the matrix horizontally to the matrix.

e Draw down-right diagonal lines (these must be through 3 entries). Sum
the products on these lines.

e Draw down-left diagonal lines. Sum the products on these lines.

e Subtract the second from the first.

Compute

B~ o N
(S =
© 1~

This gives us (18 + 04+ 30) — (70 4+ 0+ 4) = 48 — 74 = —26.

Determinants are extremely slow to compute and are O(n!). So why do we
define it using such a complex recursive process? The answer is because its
deifned in geoemtrically. In 2 dimensions, the determinant of a matrix represents
the area; in 3, the volume; in 4, the 4-dimensional hypervolume.

For a given n x n matrix, the determinant is defined as the n-dimensional
volume spanned by the n vectors in n-dimensional space by their parallelepepied.

26.2 Determinant Properties

“Theorem 4.1:” Row interchange property

Let A € M(n,n). Supposer B is obtained by inerchanging two rows of A.
Then
det(B) = — det(A).
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“Theorem 4.3:” Row scalar property

Suppose the n X n matrix B is obtained from A by multiplying each
element in the ith row by some scalar ¢. Then

det(B) = c¢- det(A).

“Theorem 4.6:” Row additive property

Let U,V and A; be 1 x n row vectors, where ¢ = 2,3,...,n. Then

U+V U %
det =1 |+]|:
A, A, A,
det(a +b)

does not have a closed form expression in general, and it is NOT

det(a) + det(b).

27 The rest of the course

I starting taking notes in OneNote at this point. Please beware! THe nice
formatting and explanations go dramatically downhill.
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3.31 Let A be an m X n matrix and let M be the matrix of 74, with respect to bases B
of R™ and B of R". Then rank A = rank M. [Hint: Consider formula (3.36).]
3.32 Let B and B be ordered bases for R”. Then the matrix of the identity trans-

formation of R” into itself with respect to B and B is the nxn identity
matrix /.

3.33 Let B and B be ordered bases for R" where B = B. Then the _matrix of the
identity transformation of R” into itself with respect to B and B is the n X n
identity matrix /.

3.34 Let A be an m X n matrix and let M be the matrix of 7,4 with respect to bases B
and BB. Then the dimensions of the column spaces of A and M are equal.

3.35 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases 3
and BB. Then the the column spaces of A and M are equal.

3.31 True.

M= CgAPy
A [N

Iﬁ\lwwf‘)g & MU gY THEM
poes (o7 CHANGE RANYK
D Pone M= RaL A

3.32 False. Not necessarily true, as

M= CEAPR
R spented MKIREY
= f5Al

Is only true if B bar is B.

3.33 True, as this satisfies the condition above.

A maavaey mmameenaan s

3.34 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases BB
and B. Then the dimensions of the column spaces of A and M are equal.



True. Dimension of the column space is the rank, and they have the same rank by 3.31

3.35 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases B
and B. Then the the column spaces of A and M are equal.

False. Even though the dimensions are equal, they are not the same spaces, as A = C_B bar
M P_B, and so unless multiplying by C_B bar and M_B does nothing which they generally will
not, the two matrices won't have the same space.

3.36 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases B
and BB. Then the dimensions of the row spaces of A and M are equal.

True, as the dimension of the row space is the rank, and we know that the ranks are equal.

3.37 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases B
and 3. Then the row spaces of A and M are equal.

False, by the logic of 3.35

3.38 Let A be an m X n matrix and let M be the matrix of 7, with respect to bases B
and B. Then the dimensions of the nullspaces of A and M are equal.

True, they have the same rank, so they have the same nullity by the rank-nullity theorem.

3.39 Let A be an m X n matrix and let M be the matrix of T, with respect to bases B
and B. Then A and M have the same nullspace.

False, by the logic of 3.35

4.1 The following matrices have the same determinant. [Hint: Factor some scalars
out from the determinants.]

2 4 2 6 36 3 9
3 3 27 33 2 1 5 2
2 1 5 2 6 1 -3 3
6 1 -3 3 2 2 18 22

True. Just spam some determinant operations.

4.2 Let A be a 3 X 3 matrix. Then det(5A) = 5 det(A).

False. If you multiply ONE ROW by 5, the determinant is scaled by 5, but 5A scales 3 rows.

As an aside, just consider the determinant of an nxn matrix analogous to
L2

So det (5x) here would be 523 x*n. And also f(x + y) isn't just x*n +y”n.

4.3 Let A and B be 3 X 3 matrices. Then det(A + B) = det(A) + det(B).



False. Consider the above reasoning, but this also isn't a real formula.

4.4 The following statement is true:

2 4 2 6 2 4 26 2 4 2 6
3 3 27 33 PN 1 1 2 0 . 1 1 23 33
2 1 5 21 7121 5 2 2 1 5 2
6 1 -3 3 6 1 -3 3 6 1 -3 3
Spam theorems.
4.5 The following statement is true:
i ;‘ g g 3 7 8 2 26
’2 ’] 5 9 =412 5 2|-3|2 5 2
6 1 -3 3 6 -3 3 6 -3 3
2 26 2 2 6
+{3 7 8(—|3 7 8
6 -3 3 2 5 2

False. You also spam theorems here, but it's a bit more subtle. Note that det(A*t) = det(A),
switch two rows, then transpose it back. You'll be off by a sign.

4.6 The following matrices have the same determinant:

1753 0 0 0 1753 27 13 -15
27 33 0 0 0 33 911 +4
13 911 1411 oy 0 0 1411 32

-15 44 32 1001 0 O 0 1001

True. If they're triangular, you can just multiply it across their diagonals.

4.7 The following matrices have the same determinant:

1753 0 0 0 0 0 0 1753
27 33 0 0 0 0 33 27
13 911 1411 0 0 1411 911 13

—-15 44 32 1001 1001 32 4 -15

True. This is a bit more subtle. The second matrix actually isn't a triangular matrix (you need
either the upper right or bottom left to be zero entries). You can transform the second
matrix INTO a triangular matrix by exchanging rows into an upper triangular matrix. This
takes two swaps, so the sign doesn't change.



4.8 Given that none of the determinants are 0, the following matrices have the same

dete[minant:
1 2 3 1 2 3
(c) 4 4 41, 41 1 1 |
-1 2 -1 -1 2 -1
7 =3 4 =2 7 =3 4 =2
13 6 5 11 1 2 1 0
() 1 2 1 of’ 10 0 2 11
17 16 5 6 17 16 5 6
[2 3 -5 3 2 7 1 3
© 7 1 2 3 31 4 2
D11 4 4 1) -5 2 4 4
[3 2 4 5 3 3 1 5

False. This is a trick question. The second matrix is 4 times the entire matrix, not just times
the second row. If we replaced the brackets with determinant vertical lines, they would then
be equal.

False. The third row in the second matrix is a linear combination, but there's also a row
swap, so no.

True. This is just the transpose.
4.9 For all n X n matrices A and B, det(AB) = det(BA).

True. Even though AB = BA in general, det(AB) = det A * det B and the rest is pretty fast to
prove.

4.10 Suppose that det(A + 1) = 3, and det(A — I) = 5. Then
det(A2 — 1) =20
False. det AB = det a * det b, so this should be 15.

4.11 Suppose thatdet A = 2, det(A + I) = 3, and det(A + 2/) = 5. Then
det(A* + 343 +24%) = 48

}et('AlLAZ+BA+21'))

det (A" (A+ZIAATYD
Jet A-oetA- det A2 . get A+T
.2 - 3 D
74
As an aside most ('AZ/BZ) #QA“})(/’\’B).

)

Factorizations across two



Matrices generally don't work because they rely on middle terms cancelling which isn't
always guaranteed due to anticommutativity.

4.12 In the following system, you may assume that the determinant of the coefficient
matrix is not zero. Then, z = 0. [Hint: Compute the sum of the first two columns
of the coefficient matrix.]

2x+3y—-5z4+3w=5
Ix+ y+2z+3w=38
x+4y+4z4+ w=5
3x+2y+4z+5w =35

4.13 If the following matrix is invertible, then the (1, 4) entry of A~ is zero. [Hint:
Compute the sum of the first two rows of A.]

1 2 1 13
2 3 -5 -1
A= 05 —4 12
1 1 1 1

Use Cramer's rule.

5.1 If Aisann X n matrix that has zero for an eigenvalue, then A cannot be invertible.
True. If we have a zero eigenvalue, it cannot be invertible.
5.2 There is no 3 X 3 matrix A with p4(4) = (4 — 2)2(A = 3).

False. The leading term of a characteristic polynomial must be -1 to the power of the degree
(since factors are of the form k - lambda). This is a trick question since it's of the form
lambda - k.

5.3 If Ais a 3 X 3 matrix with p4(4) = (2 — 2)2(3 — ) then:
(a) There is a nonzero vector X such that AX = 2X.
(b) Then there is at most one nonzero vector X such that AX = 3X.
(c¢) There are two linearly independent vectors X; and X, such that AX; = 2X;.

Ais true. We always have at least one representative eigenvector.

B is false. Scalar multiples of representative eigenvectors are also eigenvectors. There is only
one linearly independent X for the condition, though.

Cis false. The matrix can be deficient.

5.4 The sum of two eigenvectors is an eigenvector.

False. This is only true if the two eigenvectors belong to the same eigenspace.

5.5 If X is an eigenvector for A with eigenvalue 3, then 2X is an eigenvector for A
with eigenvalue 6.

False.



Al2x)= 2-Ax
= 2-34
= 6 X
= 32
Wh=3,

5.6 If X is an eigenvector for an n X n matrix A, then X is also an eigenvector for
2A.

True. Note though the eigenvalue changes.

(A% = 2 AKX
ZAINA
2N X
CewAle
for 2A.

5.7 If 3 is an eigenvalue for A, then 9 is an eigenvalue for A2,

True.

AX=3X

AXz [\-AX
< A 3%
= 33x
:qx

5.8 Suppose that A is a 3 X 3 matrix with 2 and 3 as its only eigenvalues. Then A is
deficient.



False. One of these can have multiplicity 2 and then have 2 eigenvectors with the other
having multiplicity 1 and have 1 eigenvector. Also consider

f’loO""T
| 0023 |

—

Which is pretty obviously a diagonal matrix.

5.9 The only nondeficient 3 X 3 matrix that has 1 as its only eigenvalue is the identity
matrix. [Hint: What is the dimension of the 4 = 1 eigenspace in this context.]

True.

5.10 Suppose that p,(4) = —A3(4 = 2)(4 + 3)%. Then, the nullspace of A is at most
two-dimensional.

False. The nullspace is the zero eigenspace, and it can be up to 3 here.
5.11 There is a 3 X 3 matrix with eigenvalues 1, 2, 3, and 4.

False. We can't have more eigenvalues (including multiplicity) than we have dimension of
the matrix.
5.12 Suppose that A is a 3 X 3 matrix with eigenvalues 2, 3, and 4. Then detA = 9.

False. We have that for a given matrix that is diagonalizable,

det (A)= Jet CADP™ D
et (DD
WHERE. P = ™"
0 M
A = det(nd,
ALTERNKTINEWY ) Tve  (asNT o)
Ea0 = e t(M.
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5.13 Suppose that A is a 3 X 3 diagonalizable matrix such that A has eigenvalues 1,
4, and 9. Then A has eigenvalues 1, 2, and 3.

False. Don't forget that A can have eigen values NEGATIVE one, two and three.

5.14 There are at least two 2 X 2 matrices, with eigenvectors Q; = [1, 2]* and 0, =
[—3,2]" corresponding to the respective eigenvalues A; = —2 and 4, = 0.

5.15 There is no matrix A that has the vectors X; =[1,1, 1], X, =[1,0, 1]", and

X5 = [2, 1,2]" as eigenvectors corresponding, respectively, to the eigenvalues 1,
2, and 3.

True. X _3=X_1+X 2, soit can't have its own eigenvalue. Eigenvectors for different
eigenvalues must be linearly independent. So the matrix doesn't exist.

5.16 There is no matrix A that has the vectors X, = [1,1,1]", X, =[1,0,1]", and

X5 = [2,1,3]" as eigenvectors corresponding, respectively, to the eigenvalues 1,
2, and 3.

False. They're linearly independent, so it's ok. To find such a matrix A, just solve

D(l X3 X}j: 7-3 LX) X, Xg]
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