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Abstract

This document describes a series of intuitions and techniques to very
quickly gauge the convergence or divergence of most simple series encoun-
tered in a Calculus-II or equivalent course.

1 Disclaimer

Due to the relative lack of both breadth and depth, this document is not meant to
replace or displace other study methods. I make no guarantees for self sufficiency;
use this as a supplement or a cheat-sheet, but nothing more.
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2 All tests

A quite useful mnemonic to remember the name of all the tests is the “word”
PDARRLING. As follows,

• P – P−series

• D – Direct comparison

• A – Alternating series

• R – Ratio test

• R – Root test

• L – Limit comparison

• I – Integral test

• N – n−th term test

• G – Geometric series criterion.

When asked to rigorously identify which test to use for a given series, apply
the following steps:

1. Is it a special series such as a P−series or a geometric series? Use their
corresponding tests.

2. Mentally check the n−th term test. Actually cite if the n−th term test
shows the series diverges, but continue otherwise.

3. Does the series look a lot like a different series you already know converges
or diverges? Apply the limit comparison test.

• If you have to rely on the fact that some class of functions dominates
another or there is some mixing of classes (such as factorials, expo-
nential or polynomials), apply direct comparison in some capacity.

4. Does the series have a really long expression raised to the n−th power?
Apply the root test.

5. Does the series have a factorial and/or an exponential and polynomial?
Apply the ratio test.

6. Does the series have a (−1)n in some way? Apply the alternating series
test.

7. Apply the integral test.

Note that you should carry out the first six steps immediately for a simple series;
the majority of the time, it should be blatantly obvious which test(s) you ought
to use for a series.

Symbolically, we can adhere to the following table:
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Situation Test Condition(s)

Num. > Denom. n−th term If limn→∞ an 6= 0, diverges.∑∞
n=k

1
np P−series If p ≤ 1, diverges.

If p > 1, converges.∑∞
n=k r

n Geometric series If |r| ≥ 1, diverges.
If |r| < 1, converges.

Lookalike Limit comparison If limn→∞
an

bn
6∈ R, diverges.

If limn→∞
an

bn
∈ R, converges.∑∞

n=k (an)
n

Root test If limn→∞ an ≥ 1, diverges.
If limn→∞ an < 1, converges.

“Mixed classes” Ratio test If limn→∞
an+1

an
> 1, diverges

If an+1

an
< 1, converges.

If an+1

an
= 1, inconclusive.∑∞

n=k(−1)nan Alternating series If |an| is monotonically decreasing
and limn→∞ an = 0, converge.

No tests left Integral test If f(n) = an, given that f(n)
is positive
and monotonically decreasing,
if
∫∞
k

f(x) dx diverges, diverges.
If
∫∞
k

f(x) dx converges, converges.

To gauge if a given series
∑∞

n=k an converges absolutely, simply see if∑∞
n=k |an| converges. A series where

∑∞
n=k |an| converges is said to converge

absolutely. If
∑∞

n=k |an| diverges but
∑∞

n=k an converges, the series is said to
be conditionally convergent.

3 Weird geometric series

Certain series are unnecessarily tricky – I don’t mean this to mean that numerous
tests are necessary or that the algebraic work for the test is really involved – I
mean this to mean that you are expected to use techniques that may not be
formally taught in order to get an answer. I will enumerate some here:
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Example 1: MA 162 EXAM 2 Q12

Does the series
∞∑

n=1

1 + 3n

7n

converge? If so, what is its sum?

Outline: Clearly a question that asks you for a value has to be either a geometric
series or a telescoping series, and the 3n and 7n suggest it to be the former.
Unfortunately, there does not exist a common ratio, so it’s not a normal geometric
series. The trick is to split the expression into two.

1. Split
∑∞

n=1
1+3n

7n into two sums.

2. Compute the value of the two sums.

3. Add the two sums together.

4. Answer the question.

Example 2: Paul’s Online Math Notes; Special Series

Determine if the following series [converges or diverges.] If [it converges]
give the value of the series.

∞∑
n=1

9−n+24n+1.

Outline: This doesn’t really look like a geometric series, but actually is one.
The trick is to extract the ns by exponent rules.

1. “Factor out”, by exponent rules, 9−n to get 9−n and 92. Repeat this
process with 4n and 41.

2. Rewrite the expression and put 92 right next to 41, put 9−n and 4n next
to each other.

3. Note that 41 × 92 is just a constant which can be “factored out” of the
sum. This leaves you with just 4n · 9−n.

4. Rewrite 4n · 9−n as
(
4n

9n

)
.

5. Conclude.
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Example 3: Paul’s Online Math Notes; Special Series

Determine if the following series [converges or diverges.] If [it converges]
give the value of the series.

∞∑
n=0

(−4)
3n

5n−1
.

Outline: The trick is that for a given geometric series, we want it in terms of
rn. Unfortunately the (−4)

3n
gets in the way with it.

1. Rewrite (−4)
3n

as
(

(−4)
3
)n

.

2. Simplify
(

(−4)
3
)n

to (−64)
n
.

3. Rewrite 5n−1 as 5−1 · 5n, then “factor out” 5−1.

4. Conclude.

4 Quick & accurate guessing

The most efficient way to solve a
problem is to simply guess the
correct answer.

AJ Shaka, PhD.

By taking advantage of a few theorems, most convoluted expressions can be
reduced incredibly quickly. Almost every scary looking series can be reduced to
something very easily workable.

Theorem 1: Function growth

Regardless of base, factorials dominate exponential functions dominates
polynomials dominates constants.

Polynomials dominate logarithms, but logarithms themselves do not domi-
nate constants. Specifically linear polynomials do not dominate constants,
either.

n!� an � na � a.

This can be proved by induction and a bunch of other ways, but I won’t
bother with it here.

This theorem is incredibly useful as it enables us not only to simplify compli-
cated expressions down to at most two expressions, but it can also enable us to
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form a conclusion immediately after. Of course, once we have our conclusion,
we can apply the tests to verify our answer. The rough procedure is as follows:

1. Use limit domination to simplify numerators and denominators.

2. Use limit domination to compare the numerator and denominator.

3. Conclude.

Example 4: MA 162 EXAM 3 2018 Q4*

Discern if the following series converges or diverges:

∞∑
n=1

2n

n2
.

Solution: Note that the numerator of this fraction is an exponential function
and the denominator of this fraction is a polynomial. Since the numerator
dominates the denominator, the series diverges.

Of course, this isn’t a rigorous proof. To actually show that the series
converges or diverges, use the ratio test.

Example 5: MA 162 EXAM 3 2018 Q4*

Discern if the following series converges or diverges:

∞∑
n=1

1

2n(1 + n)
.

Solution: Note that exponential functions dominate polynomials, we can rewrite
the denominator as simply 2n which gives us

∑∞
n=1

1
2n . Then, by observing that

the denominator dominates the numerator, the series converges.

Example 6: MA 162 EXAM 3 2018 Q4*

Discern if the following series converges or diverges:

∞∑
n=1

n2

3n
.

Solution: Note that the denominator dominates the numerator, so the series
converges.
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Example 7: MA 162 FINAL 2017 Q18*

iscern if the following series converges or diverges:

∞∑
n=2

1

n lnn
.

Solution: Polynomials dominate logarithms, so the denominator can be rerwit-
ten as n. The series is then

∑∞
n=2

1
n , which diverges as the harmonic series.

Example 8: MA 162 EXAM 3 2017 Q1*

Discern if the following series converges or diverges:

∞∑
n=1

n

n2 + 7
.

Solution: Note that polynomials dominate constants, so we can rewrite the
denominator as n2. The series is then

∑∞
n=1

n
n2 , which simplifies to

∑∞
n=1

1
n ,

which diverges as the harmonic series.

Example 9: MA 162 EXAM 3 2017 Q3*

Discern if the following series converges or diverges:

∞∑
n=1

3n2

n3 + 1
.

Solution: Rewrite the denominator as n3. The series is then
∑∞

n=1
3n2

n3 , which
simplifies to 3

∑∞
n=1

1
n , which diverges as the harmonic series.

Example 10: MA 162 EXAM 3 2017 Q3*

Discern if the following series converges or diverges.

∞∑
n=1

3n2

(n3 + 1)
4/3

Solution: Rewrite the denominator as
(
n3
)4/3

, which can then be simplified to

n4. The series is then
∑∞

n=1
3n2

n4 , which converges after simplification.
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