

Algebraically Identifying Quadric Surfaces

DeVon Herr

February 2019

Abstract

This article discusses a logical process to quickly identify, algebraically, what quadric surface a given equation is. This method ought to be used alongside, or as a heuristic, to drawing level curves of the surface, instead of completely replacing it.

Dedicated to Andy and Pranav.

Disclaimer: We will not concern ourselves with all quadric surfaces; we will only examine a small subset of them. These were the ones that I was required to learn in my Calculus-III (MA-261) course.

For posterity, the subset of quadric surfaces in the scope of this document are defined as follows:

Definition 1: “Simple Quadric Surfaces”

$$Ax^a + By^b + Cz^c = D; \quad a, b, c \in \{0, 1, 2\} \quad A, B, C \in \{\mathbb{R}\}$$

A “simple” quadric surface is a linear combination of x , y and z with degree either 0, 1 or 2.

1. Count Variables.

(a) If it is only one or two variables, it is a cylindrical surface.

2. Isolate the constant, and make it positive. If it's zero, go to step 4.

3. Count the number of linear terms.

• All quadratic terms:

- (a) How many quadratic terms are negative?
 - Zero? Ellipsoid or sphere.
 - One? Hyperboloid of one sheet.
 - Two? Hyperboloid of two sheets.
 - Three? Degenerate/no solution.

• Two quadratic terms, one linear term:

- (a) Are the quadratic terms the same sign?
 - Yes? (Elliptical) paraboloid.
 - No? Hyperbolic paraboloid.

• One quadratic term and two linear terms? Cylindrical parabola.

• No quadratic term and three linear terms? Plane. Not a quadric surface.

4. Count the number of quadratic terms.

• Three:

- (a) Are all the terms the same sign?
 - Yes? A point.
 - No? A cone.

• Two:

- (a) Are the quadratic terms the same sign?
 - Yes? (Elliptical) hyperboloid.
 - No? Hyperbolic paraboloid.

• One? Not a simple quadric surface (it's a rotated parabolic cylinder).

• Zero? A plane. Not a quadric surface.