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Abstract
In this article we derive the famous “integration by parts” formula
Judv = wv — [wvdu, give intuition on said derivation, then apply the
formula to solve problems, including . We also discuss some mnemonics
for the choice of u and dv, tabular integration or “tic-tac-toe” integration
of Stand and Deliver fame as well as “infinite” problems.

Dedicated to Erica and Matthew

1 Introduction

By the fundamental theorem of calculus, the process of anti-differentiation and
integration are intimately linked: for a continuous function on a given interval,
the integral is the anti-derivative. As the word anti-derivative implies, finding the
integral is then simply finding another function whose derivative is the original
function. For this specific reason, most “rules” and “formulas” for integration
are really just differentiation rules backwards.

The most explicit example is the power rule. For any function z™, the
derivative is given by

T (") = na" L.

Verbally, the derivative is computed by multiplying the function by the exponent,
then subtracting one from the exponent. Likewise, the integral of a function x™
is the process backwards.

1
/x" de = ——z"1 4+ C.
n+1

One now adds one to the exponent, then divides by the new exponent.
Integration by substitution (or u—sub) is the integration counterpart of the
chain-rule. We seek, then, to find the counterpart for the product-rule

%f(x) x g(z) = (f'(x) x g(x)) + (f(x) x ¢'(x)).

*Special thanks to Mr. Steele, who taught me this first, Lexi, for strengthening my resolve,
and Erica, who gave my words a purpose.




2 A Motivating Example

Find the integral of

f(x) = 23e® + 32267,

with respect to x.

A pretty big clue is that the anti-derivative probably involves the functions
2% and e®; note that the derivative of 22 is 322 and the derivative of e® is, well,
x

er.
A natural guess, then, is that the integral of the function is f(x) = z3e®.

Indeed, taking the derivative of x3e® verifies that
d

e (:1:361) = 2%e® + 322",

For harder examples, the thought process of “what functions are involved?”
will remain useful. In the spirit of raising the difficulty of the problem but
keeping details the same, find the anti-derivative of just one of the terms.

Find the anti-derivative of

g (r) = 3x%e”.

While the product rule of derivatives yields a sum of two terms, unfortunately,
this is only a single term. For integrals that are a product of two distinct functions,
we require a new trick.

2.1 First Steps towards Derivation

Writing the explicit differentiation again, but this time with colors,

% (z°€”) = 2®e” + 3a7e".

Integrating both sides of the expression,

/ <% (a:3e””)> dr = /x3e”” + 32%¢" dx.

Noting that the anti-derivative of a derivative is just the original function itself,

23 = /x?’e” + 322" dx.



We're getting closer. The last leap of faith is to note that the integral of the
sum of two functions can be split into two integrals. Doing so,

z3e” = /x3ez dr + /3%‘261 dx.

Aha! Look again. The integral of 2%¢” is precisely what we’re after.
Algebraically solving for [ z%e” dz,

/xgex do = z3e® — /39&26”" dx.

Unfortunately, we're stuck, again. We don’t have a way to actually simplify
S/ 3z2e” dx yet. Keep this algebraic manipulation in mind, however. We will use
this again later.

3 Deriving the Integration by Parts Formula

Consider two functions u(z) and v(z), or u and v for short. Their derivatives
will thus be denoted by du and dv. Taking the derivative of u(x) x v(x) by the
product rule,

d ’ /
au(x)v(x) =u'(x)v(z) + ulx)v'(x).

Following the same procedure the subsection prior, we integrate both sides.
u(z)v(z) = /u/(x)v(x) dr + /u(x)v/(x) dx.

Solving for one of the terms, say [u(z)v'(x) dz, gives

Rearranging and using short-hands, we have the integration by parts formula:

/udv:uv—/vdu.

4 Simple Worked Examples

Try to follow along with each step.

Evaluate

/mez dx.




Note that the only reason this integral is worth looking at is that it’s a
product of two functions that don’t talk to each other. If the function was just
e”, it would be easy. If it was just x, it would be easy. Even if it were 2ze” | it
would be easy, as 2 and 2z do talk to each other, 2z is 22’s derivative.

Recalling the integration by parts formula [udv = uv — [ vdu, we will have
to make a choice before we can began integrating. If [xe® dx is the [udv term,
we will have to pick one function to be v and one to be dwv.

In this example, we will let v = x and dv = e*dx. Don’t worry about which
to choose now, in this example we will focus more on the actual mechanics of
integration by parts.

U=z
dv = e*dx.
Taking yet another look at the integration by parts formula, in addition to
u and dv, the expression demands du and v. We only have v and dv so far, so
we’ll have to find what du and v are from them. Remember in when we derived
the integration by parts formula last section, we had that du is the derivative of
uw and dv is the integral of v. Taking the derivative of u,
u =z, du=1dx
dv = e® dz.
Now to find v. Note that if dv is the derivative of v, this is the same thing as
saying v is the integral of dv. Integrating dv,
u =, du=1dx

dv =¢e" dx v =ée".

Armed with everything, we can now use the integration by parts formula.

/udvzuvf/vdu
/xexdx:xxew—/ewxldx.

/xem dx:mew—/em dx.

All that’s left to do is to compute the integral of e®, which we know to be e* 4+ C.
Integrating,

Simplifying,

/a:e‘” dr = xze® — e® + C.

And we are done.
Let’s try a harder one.



Example 4

Evaluate

/x\/a: +1 dz.

Hint: Let u = x and dv = vz + 1 dx.

We start by differentiating u to find du and integrating dv to find v.

u =x du=1dx
2 3
dv=+vzx+1ldx v :g(m+1)g

Applying the formula,

/udv:uv—/vdu

/m\/x—i—ldm:xx( r+1 2> /%x—i—l%xldx.

w

Simplifying,

2
/xx/a:—I— dm— a:—l—lg /gax—l—l
5(

N\w

The last step is to evaluate the integral of 2

/x\/x—i— Tde =22 x—i—l)%—%(m—i-l)%—i—a

And we are done.

5 Picking u and dv

I have held off from talking about selecting functions to be v and dv as it should
come secondary to the actual differentiation and integration processes necessary
for integration by parts.

Reviewing the integration by parts formula

/udv:uv—/vdu,

finding the uv term by integrating dv to find v is generally easy, but finding the
— f vdu term can be considerably difficult.

Why? Integrating a single function is generally straight forward, and then
multiplying it with another function is not too bad either. However, multiplying
two functions together then integrating can be difficult if the product is par-
ticularly “bad.” In fact, integrating products of functions is what integration



by parts is actually used for, so sometimes integration by parts has to be used
again just to simplify the — [ vdu part.

We want to make our lives easier, and make sure the — [vdu term is as
simple as possible. To do so, we follow a mnemonic:

“LIPE.T.”
Another one is
“LIATE.”

Both of them use the same principle.

LI.P.E.T.

o L — Logarithmic

e T — Trigonometric

The idea is that when given the product of two functions, one should classify
the two functions into one of the 5 types, and whichever comes first in the word
“LIPET” will be u, and the other function should be dv.

What should u and dv be in order to integrate

f(z) = zIn(z)

with respect to z?

The two functions involved here are = and In(x). The former is a polynomial,
and the latter is a logarithmic function. As L comes before P in “LIPET)”
u = 1In(z) and dv = x.

It may be worthwhile to try and actually integrate z In(x) for practice.



Example 6

What should v and dv be in order to integrate

/:ccos(:c) dx

with respect to x?

. J

The two functions are z and cos(z). The former is a polynomial, and the
latter is a trigonometric function. As P comes before T in “LIPET,” u = x and
dv = cos(z).

It may be worthwhile to try and actually integrate = cos(x), too, for practice.

6 Definite Integration
Luckily for us, unlike certain u—sub questions, the upper and lower limits of

integration don’t do anything weird with integration by parts. That is, if one
takes the definite integral of a product of two functions u(z) x v'(z),

/abu<:c) x v/ (z) = u(z) x v(z)|? - /abv(:v) x o/ (z) da,

b , b
/ udv = uv|, —/ vdu.
a a

That is, one can find the anti-derivative of a product of functions by integra-
tion by parts, and then apply the upper and lower limits of integration to the
anti-derivative.

or more compactly,

7 Iterated Integration by Parts

We discussed earlier that sometimes the — [ vdu term doesn’t integrate easily
and may actually require another integration by parts. While this doesn’t require
any new tricks or new math, it is good to be prepared for it and be exposed.

Evaluate the following integral.

/w2 sin(10w) dw




By “LIPET,” u = w? and dv = sin(10w) dw. Differentiating u to find du
and integrating dv to find v gives us

u = w? du = 2w dw

dv = sin(10w) dw v o= % cos(10w).

Using the integration by parts formula,

/udv:uv—/vdu

-1 -1
/w2 sin(10w) dw = w? x 0 cos(10w) — / Ecos(lOw) X 2w dw.

Simplifying terms,

—w?

/w2 sin(10w) dw = 10 cos(10w) + /%cos(lOw) dw.

Note that factoring out the —1 from the %01 turns the integral positive.

We now hit a roadblock, as [ ¢ cos(10w) dw doesn’t easily integrate. In fact,
as a product of two functions that don’t talk to each other, we actually have
to do integration by parts again.

Noting that ¥ is a polynomial (a linear one) and cos(10w) is a trigonometric
function, by “LIPET,” u = ¥ and dv = cos(10w) dw. Differentiating u to find
du and v to find dv gives us

u == du = 1 dw
) )
1
dv = cos(10w) v =15 sin(10w).

Using the integration by parts formula again,

/udvzuv—/vdu

: 1 1 1
/ %cos(lOw) dw = % x 1o sin(10w) - / 1 5in(10w) x - dw.

Simplifying terms,
1
/%cos(lOw) dw = % sin(10w) — / 50 sin(10w) dw.
All that’s left is to carry out integrating - sin(10w).

) 1
/ %cos(lOw) dw = ;)L—O sin(10w) + 500 cos(10w) + C.

We're not done yet. We've now figured out what [ ¥ cos(10w) dw is, but
remember, this was just a sub-problem to find the integral of [ w?sin(10w) dw,



which we found to be equal to ]—%2 cos(10w) + [ ¥ cos(10w) dw. Putting every-
thing together,

2

1 1
/w2 sin(10w) dw = 1lé)) cos(10w) + % sin(10w) + £00 cos(10w) + C.

And we are done.

7.1 Tabular Integration

An often easier way to deal with iterated integration by parts is a method known
as tabular integration, for calculations use a table or “tic-tac-toe” of Stand
and Deliver fame, due to three column nature of the calculations. Instead of
constantly generating new integrals, this method brainlessly generates higher
order derivatives and integrals of the original functions and avoids the potential
mess that comes from constant substitution.

Example 8

Evaluate the following integral.

/x4ef dx

A quick “LIPET” test tells us that u = z* and dv = e2. To proceed, we
construct a table as follows.

(Sign) wuw dv
+ zt e,

Then, just like in a normal integration by parts problem, we take the derivative
of u and the integral of dv. However, we then add them to the row underneath
the current one. For the sign column, we change it.

(Sign) dv
+ at el
- 4x3  2e3

We keep repeating until the v column reaches 0.

(Sign) u dv
+ xt ez
— 43 2e3
+ 1222 dez
- 24r  8e3
+ 24 16e3
— 0 323

Once the table has been constructed, we do a series of multiplications.
Starting with the sign column, the entry is multiplied by the w column entry



one to the right, and then by the dv column one to right and down. The first
term from this process would be (+) x z# x 2¢% = 2z%e%, and the next would
be (=) x 423 x 4e2 = —16z%€3.

Graphically, one follows the lines below, going one to the right, before curving
downwards, multiplying as one goes.

(Sign) u dv Result
4+ - yat oo e?
\\M
oo yda® - 2e3 ——— 2zt
4o » 1222 - 4et —— —1623¢%
e
s . 2y - 8¢5 — 3 96e3
R »24 - 16e7 —— —384e?
— 0 32e3 —— 7683

Then one sums up all the resultant terms, and then adds the arbitrary
constant of integration. Thus,

/21746% dr = 2z%e? — 162°%e% + 96222 — 384xe? + 768¢2 + C.

And we are done.
Note that this technique can also replace standard integration by parts
procedure, and may even be faster for some as well.

7.2 Cyclic Integrals

When trying to integrate functions that are combinations of trigonometric or
exponential functions, the — [vdu term in the integration by parts will need
another integral which will need yet another integral and so on.

Example 9

Find the anti-derivative of

with respect to 6.

10



Things get a little crazy here. Standard integration by parts and tabular
integration actually both fail, as e? and cos(#) can be differentiated and integrated
forever without ever hitting 0. For instance, using v = ¢’ and dv = cos(#) df,

(Sign) wu dv
+ e’ cos(f)
- e?  sin(f)
+ e?  —cos(6)
- ez — sin(6)
+ e

Neither term, even if one switches which function is u and which is dv, ever
reaches 0. We need a new trick.
Consider integrating by parts explicitly:

/ e? cosf df = e’ sin(f) — /Sin(@)eo de.
Integrating sin(#)e? by parts,

/ % cos 6 df = € sin(h) — (ee cos(d) — / —e? cos(6) d@) .

Simplifying quite a few negatives,
/eo cos B df = e’ sin(#) + €’ cos(h) — /e() cos(6) do.

Hey! The desired expression, [ ¢’ cos(f) df, is on both sides! Just like how we
could solve something like

r=3—x
by adding z, the desired quantity to both sides, then solve for it. Following the
same logic, we will add [ ¢” cos(6) df to both sides. Adding,

2/ e’ cos() df = €’ cos(0) + €’ sin(0) + C.
For unimportant reasons, we add the constant of integration in the prior step.

Then, to isolate the desired expression, one then divides by 2.

/' 0 e? cos(0) + e sin(h)

e’ cos(0) do = 3 +C.

And we are done.

By modifying the procedure for tabular integration, tabular integration can
also be used. Instead of repeatedly differentiating and integrating until a column
hits 0, we differentiate and integrate until we see the original function again.
This function can be either negative or positive, or a multiple of the original
function, so long as it contains the original function.

In this example, it would be

11



(Sign) wu dv
+ e’ cos(f)
- e’ sin(0)
+ e?  —cos(6)

Here, we stop as we see the cos(f) function appear again in the dv column.
Again, it is not a problem if the function is negative.

The multiplication order runs a bit differently. In the very last column, where
one sees a (potentially modified) copy of an original function, one writes the
integral of the product of that function, and all terms to the left.

(Sign) u dv Result
SN LA . cos(0)
ey s ol . ;:;1(9) —— e’ sin()
4+ 4o el ¢-——-< —\:os(ﬂ) —— e%cos(0)
— [ €% cos(0)

Graphically, one starts from the left column, and follows the path of arrows from
the tail to the head. The copy, however, has a special path going left, which
is then integrated. The sum of these terms, then, is equated to the original
integral, giving
0 _ 0 0 0
/e cosf df = e” sin(f) + e’ cos(f) — /e cos(6) db.
Adding [ e’ cos(0) df to both sides gives
2/ ¢’ cosf df = €’ sin(f) + €’ cos(6) + C,

which simplifies to

9 0
/60 cosf df — e’ sin(6) —|2— e’ cos(6) Lc

And we are done.

12



8 Weird, Single Functions

Despite integration by parts usually anti-differentiating products of two functions,
there are times where integration by parts is necessary to integrate a single
function.

Example 10

Evaluate the following integral.

/ln(x) dx

(It is not 2! That is the derivative of In(z)!)

\. J

The idea with integrals such as these is to view these as a function
multiplied by 1. In this case, it would be

f(z) =In(z) x 1,

the expression which we would have to use integration by parts on.
Since 1 is technically a polynomial (of degree zero) and In(x) is a logarithmic
function, v = In(z) and dv = 1 dz. Then,

1
u = In(z) du = — dx
x
dv=1dz v o=

By the integration by parts formula,

/udv:uv—/vdu

/ln(x)xldlen(x)xx—/xxida:.

/ In(z) do = 2 In(z) — / 1 da.

/ln(x) dr =zln(z) —xz+ C.

Simplifying,

Integrating 1,

And we are done.

13



9 Practice Problems

1.
/4x cos(2 — 3z) dx

2.
0
/ (2 +5z)es” d
6
3.
/ (34 t?) sin(2t) dt
4.
/Gtanfl <8) dw
w
5.
/622 cos 1z dz
4
6. .
/ x? cos(4z) dx
0
7.

/ (4353 — 922+ T+ 3) e *dx

14



